Production Effects from Frac-Driven Interactions in the SE Midland Basin, Reagan Co., TX

Bryan McDowell*, Alan Yoelin, Brad Pottebaum

4 October 2019
Introduction
Introduction

• As operators transition from field delineation to field development, frac-driven interactions (AKA frac hits) are becoming more common and more severe in most unconventional shale plays
 • Miller et al. (2016), King et al. (2017), Pankaj (2018)

• DNR had observed FDIs company acreage but had not evaluated them systematically
 • Decided to quantify the effects within an area of active development
What Are Frac-Driven Interactions?

• Frac-driven interactions (FDIs) formalized by Daneshy & King (2019)

• Variety of interactions:
 • Child-Parent pressure/fluid hits
 • Child-Child pressure/fluid hits
Goals

1. Document FDIs in active area of development
2. Quantify FDI frequency, intensity
3. Create rules-of-thumb for shut-in procedures
Methods
Workflow

1. Identify FDIs from offset frac jobs
2. Categorize parent-child spatial relationship
3. Measure inter-well distance
4. Plot FDI category vs. inter-well distance
 • Filter by different criteria
Study Area/Wells

- **Study area**
 - Midland basin, Reagan Co., TX

- **Study wells**
 - 47 horizontal wells
 - 16 vertical wells
 - 17 multi-well frac jobs
FDI Interpretations

• Based on changes in oil rate, WOR, and GOR after an offset frac job
 • Must distinguish between flush production vs. FDIs

• Parent wells were reviewed if they were either…
 • Within one mile directly east or west of a frac job OR
 • Within a 500-ft radius of the heel or toe of a frac job
FDI Interpretations

1. No FDI
2. Oil banking
3. Small water hit
4. Moderate water hit
5. Large water hit
Parent-Child Spatial Relationships

<table>
<thead>
<tr>
<th>Wellbore Geometry</th>
<th>Offset direction</th>
<th>Hz “buffer” well?</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>Direct</td>
<td>False</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>True</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Indirect</td>
<td>False</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>True</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>In–line</td>
<td>—</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Stacked</td>
<td>—</td>
<td>F</td>
</tr>
<tr>
<td>Vertical</td>
<td>Direct</td>
<td>False</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>True</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Indirect</td>
<td>False</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>True</td>
<td>J</td>
</tr>
</tbody>
</table>
Direct Offsets (Vertical wells)

Direct Offsets (Horizontal wells)
Indirect Offsets (Vertical wells)

Indirect Offsets (Horizontal wells)
In-line Offsets

Stacked Offsets

Only applicable for horizontal wells
Horizontal "Buffer" Well
All Configurations

Color by:
- No FDI
- Oil banking
- Small water hit
- Moderate water hit
- Large water hit

<table>
<thead>
<tr>
<th>Inter-well Distance [ft]</th>
<th>n = 43</th>
<th>n = 22</th>
<th>n = 47</th>
<th>n = 21</th>
<th>n = 14</th>
<th>n = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ≤ 1,000</td>
<td>30%</td>
<td>14%</td>
<td>42%</td>
<td>71%</td>
<td>79%</td>
<td>80%</td>
</tr>
<tr>
<td>1,000 < x ≤ 2,000</td>
<td>5%</td>
<td>18%</td>
<td>32%</td>
<td>17%</td>
<td>14%</td>
<td>20%</td>
</tr>
<tr>
<td>2,000 < x ≤ 3,000</td>
<td>14%</td>
<td>9%</td>
<td>19%</td>
<td>14%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>3,000 < x ≤ 5,000</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
<td>14%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>5,000 < x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vertical vs. Horizontal Parent Wells

All Vertical Well Configurations (G - J)

- Color by:
 - No FDI
 - Small water hit
 - Moderate water hit
 - Large water hit

<table>
<thead>
<tr>
<th>Inter-well Distance [ft]</th>
<th>n = 14</th>
<th>n = 11</th>
<th>n = 17</th>
<th>n = 13</th>
<th>n = 6</th>
<th>n = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ≤ 1,000</td>
<td>64%</td>
<td>45%</td>
<td>24%</td>
<td>18%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>1,000 < x ≤ 2,000</td>
<td>9%</td>
<td>7%</td>
<td>9%</td>
<td>6%</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>2,000 < x ≤ 3,000</td>
<td>5%</td>
<td>31%</td>
<td>36%</td>
<td>40%</td>
<td>30%</td>
<td>63%</td>
</tr>
<tr>
<td>3,000 < x ≤ 4,000</td>
<td>6%</td>
<td>31%</td>
<td>36%</td>
<td>40%</td>
<td>30%</td>
<td>63%</td>
</tr>
<tr>
<td>4,000 < x ≤ 5,000</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>x > 5,000</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

All Horizontal Well Configurations (A - F)

- Color by:
 - No FDI
 - Oil banking
 - Small water hit
 - Moderate water hit
 - Large water hit

<table>
<thead>
<tr>
<th>Inter-well Distance [ft]</th>
<th>n = 29</th>
<th>n = 30</th>
<th>n = 8</th>
<th>n = 8</th>
<th>n = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ≤ 1,000</td>
<td>31%</td>
<td>14%</td>
<td>18%</td>
<td>18%</td>
<td>14%</td>
</tr>
<tr>
<td>1,000 < x ≤ 2,000</td>
<td>17%</td>
<td>17%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>2,000 < x ≤ 3,000</td>
<td>27%</td>
<td>27%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>3,000 < x ≤ 4,000</td>
<td>13%</td>
<td>13%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>4,000 < x ≤ 5,000</td>
<td>25%</td>
<td>25%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>x > 5,000</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Direct vs. Indirect Offsets

Limited to parent wells with no “buffer” well
In-line vs. Stacked Offsets

Well Configuration E

Well Configuration F
Indirect Offsets Without vs. With “Buffer” Well

Well Configuration C

Well Configuration D

Inter-well Distance [ft]

Inter-well Distance [ft]

% FDI Types (normalized)

% FDI Types (normalized)

Color by:
- No FDI
- Oil banking
- Small water hit
- Moderate water hit

Color by:
- No FDI
- Small water hit
Major Takeaways (1/2)

• Horizontal wells receive FDIs more frequently, and with greater intensity, than vertical wells

• Stacked or direct offset parent wells receive FDIs more frequency and greater intensity

• FDI frequency and intensity is strongly correlated with inter-well distance
 • More strongly correlated for vertical wells
Major Takeaways (2/2)

• “Buffer” wells significantly reduce FDI frequency and intensity
 • Albeit at the expense of the “buffer” well itself

• Oil banking is occasionally encountered in horizontal wells but not observed in vertical wells
 • EDIT: Oil banking has been observed in vertical wells in other areas

• Most parent wells received either (a) small/moderate water hits or (b) no FDI at all
Discussion
Discussion (1/2)

• End-member results not surprising
 • Horizontal vs. vertical wells
 • Direct vs. Indirect vs. In-line vs. Stacked offsets
 • “Buffer” well present vs. absent

• However, the cumulative effect of each layer was more marked than anticipated
Discussion (2/2)

• The efficacy of “buffer” wells was not foreseen but aligns with field experience

• Positive FDIs were not recognized previously despite its occurrence in other unconventional plays
 • See Miller et al. (2016), Pankaj (2018)

• FDIs are a nuisance but do not appear to pose a major risk
Conclusions
Conclusions (1/2)

• FDI frequency/intensity are a strong function of:

 1. Wellbore geometry
 2. Offset direction between the parent/child well
 3. Presence/absence of a “buffer” well
 4. Distance
Conclusions (2/2)

• FDIs are not a significant risk to oil production in parent wells in SE Midland basin

• Production effects are:
 • Usually limited to increased water production and lower GORs
 • Usually temporary (weeks to months)
Questions?
References
References

