IADC/SPE-178864
An Instrumented Topdrive Sub System: Enabling Greater Drilling Efficiencies via Innovative Sensing Capabilities

Thomas M. Bryant, APS Technology, Inc.
Surface Drilling Mechanics System

Rigfloor Computer

Topdrive

Topdrive

Sub

RF Comms Module, with Antennas

Ethernet LAN to EDR

RS-232 to 3rd Party

Driller's Doghouse

Uplink Task Tables, Downlink Data Streams

Class 1, Div 2 or Safe Area

Class 1, Div 1 Area

Topdrive

Topdrive Sub

RS-232 to 3rd Party
Why?

- Many rig surface sensor systems:
 - Utilize indirect measurements
 - Possess sensors that are inaccurate, not regularly maintained
 - Have sensors with missing or no calibration credentials
 - Fixed sampling rates
 - Do not identify measurement quality
 - Use EDRs that have high latency times

- These factors impede drilling efficiency, and may lead to non-productive operations
What?

A single point of service for a suite of measurements:

- Hookload
- Torsion
- Bending moment/angle
- Rotation speed
- Height (depth)
- Flowrate
- Mud density
- Mud pressure
- Mud temperature
- Drillstring vibrations
Primary System Features

• Reliability & quality
 • Robust communications, calibrated sensors

• Synchronicity of measurements
 • Priority for valid data correlations
 • Common sampling and data transmission clocks

• Power conservation
 • Sensor selection by rig activity
 • Maximizes run time between battery recharges
Measurement Commonalities

Each sensor:
- has a documented calibration
- has high accuracy, low power consumption
- acquires measurements at user-configured frequencies
- located in weatherproof, noble gas filled enclosure

Each measurement:
- is direct in relation to the load path
- is made simultaneously with all others
- is available on command
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Sensor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, torque, bending moment & angle</td>
<td>Strain gages</td>
</tr>
<tr>
<td>Block height</td>
<td>Laser rangefinder</td>
</tr>
<tr>
<td>Rotation speed</td>
<td>Magnetometer, rate gyro</td>
</tr>
<tr>
<td>Pressure & temperature</td>
<td>Thin film strain gages</td>
</tr>
<tr>
<td>Flowrate and mud density</td>
<td>Ultrasonic</td>
</tr>
<tr>
<td>Axial, torsional, lateral vibrations</td>
<td>Strain gages</td>
</tr>
</tbody>
</table>
Measurement Ranges

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Estimated Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension/compression</td>
<td>0 – connection yield</td>
</tr>
<tr>
<td>Torsion</td>
<td>0 – connection yield</td>
</tr>
<tr>
<td>Bending moment</td>
<td>0 – connection yield</td>
</tr>
<tr>
<td>Rotational speed</td>
<td>0 – 200 rpm</td>
</tr>
<tr>
<td>Height</td>
<td>0 – 150 ft</td>
</tr>
<tr>
<td>Pressure (mud)</td>
<td>0 – 7500 psi</td>
</tr>
<tr>
<td>Temperature (mud)</td>
<td>0 – 250 F</td>
</tr>
<tr>
<td>Mud flowrate</td>
<td>100 – 1800 gpm</td>
</tr>
<tr>
<td>Mud density</td>
<td>7.0 to 20.0 ppg</td>
</tr>
</tbody>
</table>
Primary SDM System Sensors

- Flow & Density
- Strain Sensor
- Magnetometer, Gyro, Diagnostics
- Pressure & Temperature
- Rangefinder
- Strain Sensors
Other SDM Sub Features

- Master Controller & Radios
- Battery Pack (1 of 6)
- Secondary Pressure Containment
- Pressurized, argon filled chamber
- Antennae Housing
- Recharge, comms, and power port
SDM Sub - Physical Envelope

- Connections
 - NC40, NC46, NC50, 6 5/8”, 7 5/8”
- Mandrel
 - 8.0”, 10.0” OD, with 3.0”, 3.25” ID
- Length - 22 ½” shoulder-shoulder
- Chamber OD – 13.5” – 16.0”
Hookload, Torque, Bending Moment & Angle

- Strain gage measurements from 3 pockets
 - Oriented at 120° in same horizontal plane
- Sensors are full Wheatstone bridges
- Each pocket has 1 weight & 1 torque sensor
- Values are averages of 3 sensors
- Bending moment and Bending angle
Tension, Torsion & Bending Moment Calibrations

- Honeywell load cells with NIST traceability used for load calibrations
- 124 + calibration stations for 66 scale & bias factors
- Corrections for differential pressure and temperature
Height (Depth) Sensor

• Eye-safe laser rangefinder
• Distance measured by time of flight
• No special target required
 • reflects from any surface
• Factory calibrated
 • 0.8” accuracy at 100’, or 0.07% RD
• High sampling rate
 • can provide instantaneous ROP
Pressure & Temperature Sensors

- Digital sensors
- Thin-film strain gages
- Full Wheatstone Bridge
- Factory calibrated
- Full scale 7500 psi
 - 0.025% accuracy
- Nickel RTD temperature
 - Accuracy ≈ 1.0%
Mud Flowrate Sensor

- Flowrate derived from measurement of velocity
- Velocity measured by ultrasonic transit time differences
- Upstream & downstream sensors
- Independent of pressure, temperature & fluid density
- Accuracy ≈ 0.5% of reading
Ultrasonic Flowmeter Responses to Flowloop Pump Flowate

$R^2 = 0.9985$
Mud Density Sensor

• Same sensor used for flowrate is used for mud density
• Density is derived from a speed of sound measurement together with a measure of signal attenuation
• Empirical tests are ongoing now
 • Results to date are very encouraging
 • 8.8 to 16.3 ppg WBM
 • Tests at temperature and pressure planned for summer 2016
 • Tests to 850 gpm, WBM & OBM at Houston flow loop in September
 • Accuracy is TBD
Telemetry Channels & Radios

3 data channels:

• Uplink – Instructions – 154.6 MHz

• Principal Downlink Channel – 154.6 MHz Radio
 • Data and quality indicators transmitted from sub to rig floor
 • Wrap-around antenna, no “dead” transmission spots

• Secondary / Fast downlink – 2.4 GHz Radio Frequency
 • Can be subject to multipath signal interference - Uses multiple “patch” antennas
 • Meant for possible transmission of vibration data not processed by onboard digital signal processor
Data Transmissions

- Data telemetered in packets, with redundancy checks, sequence identifications, acknowledgements

- Each sensor data packet contains a quality indicator

- Message frequency configurable, from 1 to 500 Hz

- Data rate of primary radio is 200 kbps; max. throughput is on the order of 1.4 Mb per minute
Data Sampling & Processing

• User creates “Tasking Tables”, instruction sets uplinked to sub’s Master Controller for:
 • sensors selection
 • sampling rate for each sensor (1 to \(\approx 500\) Hz for most sensors)
 • processing for each (type of averaging: mean, mode, RMS, etc)
 • number of samples to average for each (max 256)
 • sampling clock frequency (1 to 500 Hz)
 • radio (transmission) clock frequency (1 to 500 Hz)

• Custom Tasking Tables for different operations
 • e.g., drilling, short trip, well control, other user scenarios.
Example Setup of Sensor Sampling & Update Rates

<table>
<thead>
<tr>
<th>Measurement</th>
<th>"Typical" Sampling Rate</th>
<th>Value Update Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Height</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>Hookload, Torque</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Rotary Speed</td>
<td>50</td>
<td>0.25</td>
</tr>
<tr>
<td>Mud Pressure</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Mud Temperature</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Mud Density</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Vibrations</td>
<td>450</td>
<td>1</td>
</tr>
</tbody>
</table>
Rigfloor Console & Communications Module

- Rig floor Communications Module
 - Contains the antennas for the two radios
 - Contains the two radio circuits
 - Uses Power over Ethernet for comms to Rigfloor Console
- Rig floor Console (Can be integrated into Customer provided EDR system)
 - Receives all data from sub, timestamps, and passes transparently to EDR
 - Displays data for driller
 - Performs minimal processing, algorithms for basic functions (eg, connection identification, calculation of weight on bit)
 - Uploads instructions (Tasking Tables) to topdrive sub
Status of System Components: 4/1/2016

- **SDM Sub**: Mostly completed; limited tests performed; Flowrate & density sensors require more testing
- **Rig floor Comms Module**: Prototype made & tested
- **Rig floor Console**: Basic GUI—Customizable for / by user
- **Performance EDR System**: Customizable by user
THANK YOU

QUESTIONS & COMMENTS

Instrumented Top Sub