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Outline 

• Global Impact 
• Comparison of deepwater and shale plays 
• What is a shale, anyway? 
• Other technology/service issues 
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Facts vs. theory 

• “Fact without theory is trivia” 
• “Theory without facts ...” 
•   60% of the world’s hydrocarbon production comes from 
320 of the world’s 17,000+ large oilfields. 

 



Impact on how we thought 

• Models of future oil production including pricing and 
demand (peak oil) reflected the belief that giant oilfields 
would be less plentiful and far more costly.   

• “we have to find giant fields” meant “we have to go to 
unexplored regions and depths” 

• Unconventional resources generally and shales 
specifically have injected a very large and as yet not 
completely quantified increase in supply. 

• Have we really moved from scarcity to abundance? 
•  Impact has been substantial on gas and NGL prices. 
• How well will it travel outside North America? 
• How sustainable will the impact be? 
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Net imports continue to decline 

© 2010 Baker Hughes Incorporated. All Rights Reserved.  5 



Impact of UCV is to reverse decline in production 
and stifle growth in high cost alternatives 
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Outline 

• Global Impact 
• Comparison of deepwater and shale plays 
• What is a shale, anyway? 
• Other technology/service issues 
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Production Profiles for a 100 MBO project--- 
deepwater and a shale play 
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Comparison of cumulative cash flows 100  

 $(3,000,000,000) 

 $(2,000,000,000) 

 $(1,000,000,000) 

 $-  

 $1,000,000,000  

 $2,000,000,000  

 $3,000,000,000  

 $4,000,000,000  

 $5,000,000,000  

2010 2015 2020 2025 2030 2035 2040 2045 2050 

Deepwater 

Unconventional 



Example Comparison, Deepwater and 
Unconventional 

 	   Deepwater	   Unconventional	  
Oil recovery, MMBOE	   100	   100	  

Number of wells	   7	   333	  

Peak oil rate, BOEPD	   45,500	   34,500	  

Production life, years	   13	   55+	  

Time to first production, years	   10	   0.9	  

Maximum Negative Cash, $MM	   1,769	   410	  

IRR	   14%	   18%	  

Payout, years	   10.7	   7.6	  

NTIR (undiscounted) $/$	   2.9	  	   2.4	  	  

Total Inv, $/BOE	   	  $	  20.99	  	   	  $	  24.70	  	  
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Production Profiles for a 250 MBO project--- 
deepwater and a shale play 
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Comparison of cumulative cash flows 250 
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Example Comparison, Deepwater and 
Unconventional– 250  

 	   Deepwater	   Unconventional	  
Oil recovery, MMBOE	   250	   250	  

Number of wells	   13	   833	  

Peak oil rate, BOEPD	   112,500	   54,000	  

Production life, years	   17	   55+	  

Time to first production, years	   9	   0.9	  

Maximum Negative Cash, $MM	   1,981	   1086	  

IRR	   24%	   19%	  

Payout, years	   9.5	   9	  

NTIR (undiscounted) $/$	   	  $6.4	  	   	  $2.4	  	  

Total Inv, $/BOE	   	  $9.42	  	   	  $24.96	  	  
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Some important distinctions 

• Total unconventional land costs often exceed deep water 
bonuses per acre or per BOE. 

• Reservoir characterization effort radically higher (early) for 
deep water projects. 

• High cost deep water wells compared to “factory drilling.” 
• Percentage of total well AFE going to rig owners vs. OFS 
(Shale “service intensity”) 

• Much different risk profiles 
• Upside: Deepwater has the upper hand 
• Radically different completions 



Outline 

• Global Impact 
• Comparison of deepwater and shale plays 
• What is a shale, anyway? 
• Other technology/service issues 

© 2010 Baker Hughes Incorporated. All Rights Reserved.  15 



What is a shale, anyway? 

• Most abundant type of rock in all sedimentary basins 
• Most common source rock 
• Most common trap (due to low permeabilities) 



What is a shale, anyway? 

• Geologic definition is based on grain size 
• Shales are sedimentary rocks composed of clastics 
(portions of older rocks) comprising silts, muds and clays.  

• Silts are mainly quartzitic materials 
• Clay minerals include kaolinite, montmorillonite-smectite, 
illite and chlorite. 

• Muds are simply mixtures of water and very fine silt, clay 
and soil particles. 



What is a shale, anyway? 

• Very fine grained organic material usually from plant 
materials are often deposited concurrently with the silt, 
mud and clay matter that will eventually form shales. 

• Time, temperature and pressure result in hydrocarbon 
generation. 

• A great deal of hydrocarbons are never expunged from 
low permeability shales.  
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•  How is lithology/mineralogy 
information obtained ? 

–  Mineral Spectroscopy Tools 
–  Conventional Log responses 
–  Mud Logs 
–  Conventional or rotary SWCs 

•  Various Core Analyses 
  

Haynesville Shale Barnett Shale Eagle Ford Shale 

Shale Reservoir Lithology and Mineralogy  





NPV10 ATAX 
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Global Gas In Place Resources 
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Over 44,300 TCF  
Gas in Place Resource 
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Highly variable production by well 
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A Major Transition Occurred in 2012 

“Capture Phase” 
(2002 - 2012) 

24 

“Harvest Phase” 
(2012 - ?) 

•  Land grab (“gold rush”) 

•  Spend, spend, spend 

•  Cheap financing 

  Everyone Wins 
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§  Add capacity 

§  Raise prices 

§  Have fun  

  Everyone Wins 
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§  Better be “oily” 

§  Drive efficiencies or perish 

§  Generate both growth & FCF 

  Only The Best Win 

§  Right basins 

§  Right services to drive efficiencies 

§  Low cost, high quality 

  Only The Best Win 

Key Success Factors 
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SPE ATW Risks 

• Availability of leases (land access) and “operability” 
• Water availability 
• Well costs 
• Low gas prices 
• Gas infrastructure 
• Access to “risk capital” 
• Service company capabilities 
• Government regulations 
• Lack of numerous risk seeking firms (fast failure and 
technology acceleration) 

• Geomechanics– inability to frac effectively 
• Lack of productivity/commercial quality resource 
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Questions? 
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Gutenberg-Richter Plot 



Mode I vs. Shear Modes II & III “Critically 
Stressed” Fractures 

30 

Fractures proximity to frictional failure is highly dependent on the 
relative stress magnitudes and pore pressures in the reservoir 


