Forecasting Production in Shale Gas Reservoirs- A Better Assessment of Reserves

Occidental Petroleum Corporation
GCS Reservoir Study Group
Anadarko Petroleum Convention Center
I0th May
Krunal Joshi, Reservoir Engineer

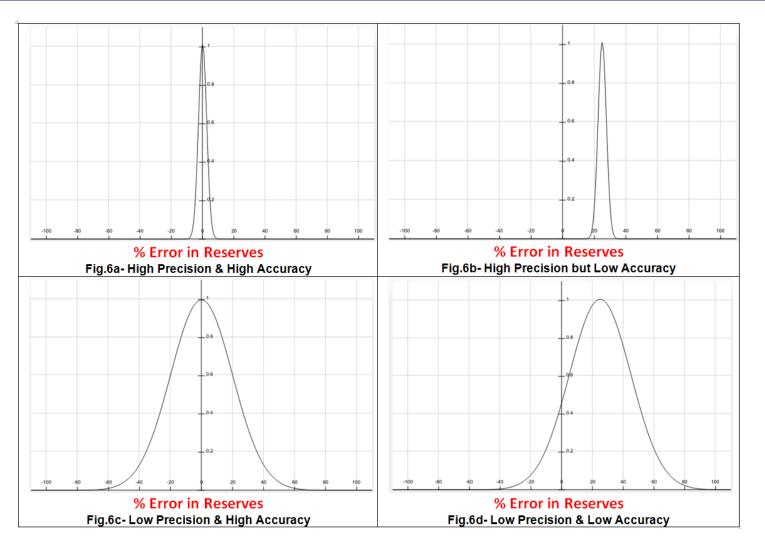
This presentation in no way represents or bears upon the Reserves process of Oxy or any of its subsidiaries

Outline

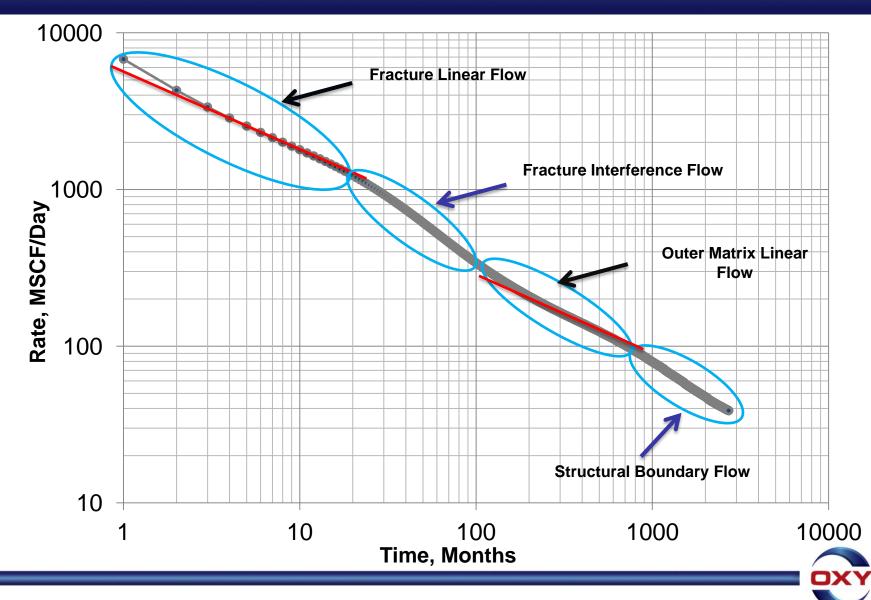
- Problem
- Deterministic forecasting models
- Fixes to the Duong method
- Comparison of deterministic forecasting models for Individual wells
- Comparison of deterministic forecasting models for grouped well sets
- Conclusions

We Have a Problem

- Forecasting methods we use in conventional reservoirs may not work well in
 - Tight oil, gas
 - Oil, gas shales
 - Unconventional resources generally


• There have been various methods proposed

Criteria for Ideal Decline Model in Ultra-Tight Reservoirs


- Forecasts are reasonable and realistic for the well life
- Forecasts reasonable even with <2 years historical production data
- Valid during transient or radial flow
- Valid for boundary-dominated flow
- Easy to use and couple with economics software

A Superior Model Has Higher Accuracy and Precision For a Large Number of Wells

Long-Term Horizontal Shale Gas Well Simulation: Linear Flow Plot

Forecasting Models

 Arps(Minimum Decline): Hyperbolic decline followed by exponential decline after a predetermined decline rate. (Arps, 1945 & Long, 1988)

• **Duong Model**: A decline model based on long-term flow regime approximating linear flow: $\frac{q}{G_n} = at^{-m}$ (Duong,2010)

Modified Duong : With a Dswitch of 5% followed by a Arps curve of b=0.4

• SEDM/SEPD Model: A decline model that is a summation of simultaneous exponential declines in different 'cells' within a reservoir. (Valko et.al,2009) $q = q_i \exp\left[-\left(\frac{t}{\tau}\right)^n\right]$

Arps (Minimum Decline)

• Best-fit "b" until predetermined minimum decline rate reached; then impose exponential decline (SPE 16237)

$$q = q_i \frac{1}{(1 + bD_i t)^{(1/b)}}$$

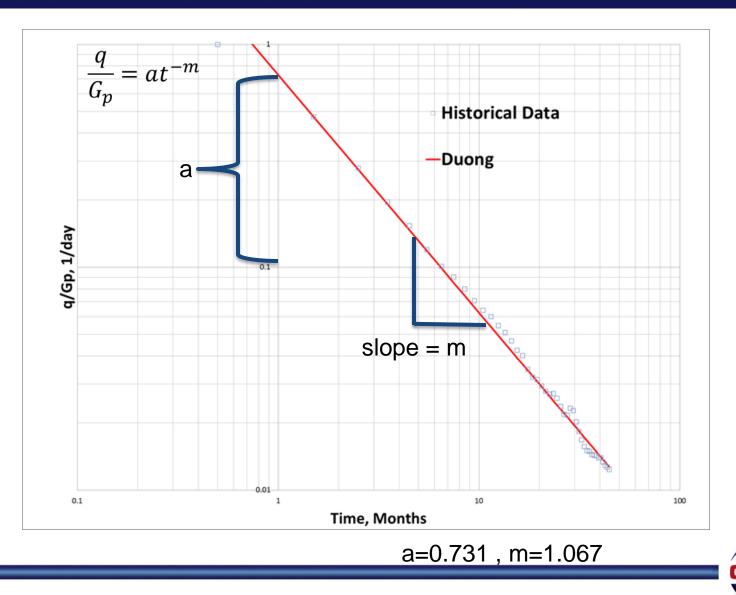
- Problems
 - Apparent "best" *b* decreases continually with time
 - Appropriate minimum decline rate based on observed long-term behavior in appropriate analogy – unavailable in new resource plays

SEPD/SEDM Model

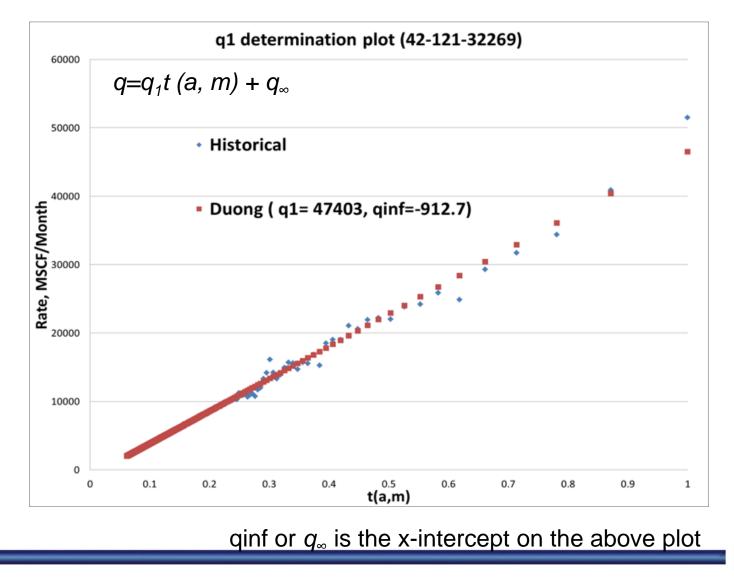
$$q = q_i \exp\left[-\left(\frac{t}{\tau}\right)^n\right]$$

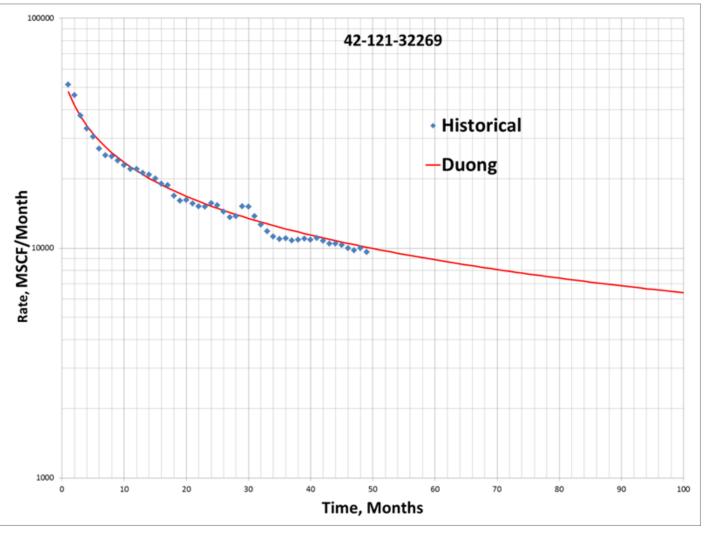
- 'Validated' for wells with both transient and stabilized flow in Barnett Shale
- Forecasts unreliable for <18 months of data
- n varies from 0.1 to 1 (exponential decline)
- Practical au range is 0.01 to 80

Based on Long-term linear flow

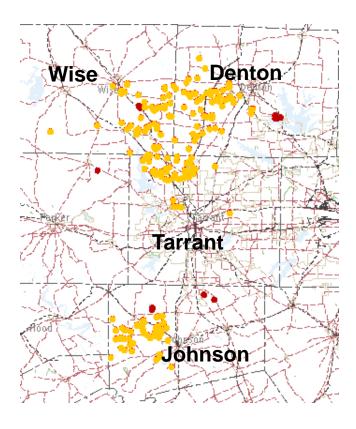

•
$$\frac{q}{G_p} = at^{-m}$$

•
$$q = q_1 t (a, m) + q_{\infty}$$


•
$$t(a,m) = t^{-m} e^{\frac{a}{1-m}(t^{1-m}-1)}$$


Determination of a & m (Duong)

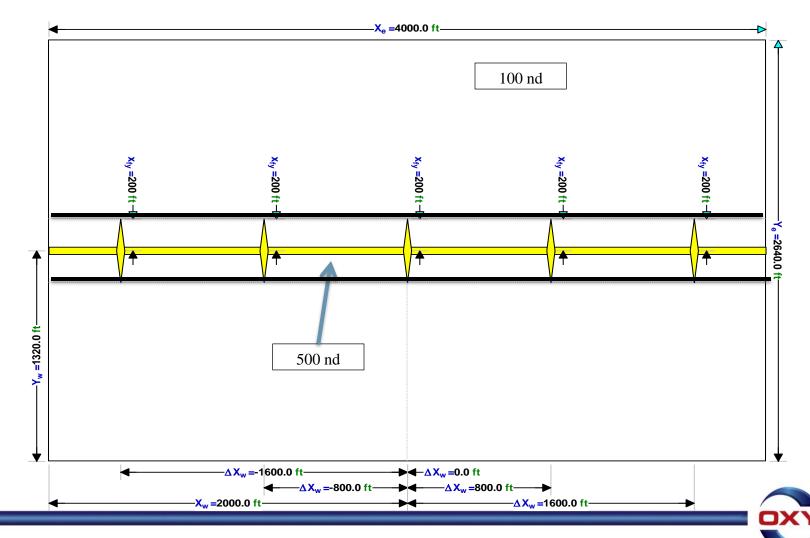
Determination of q1 & q_{∞} (or q_{inf})

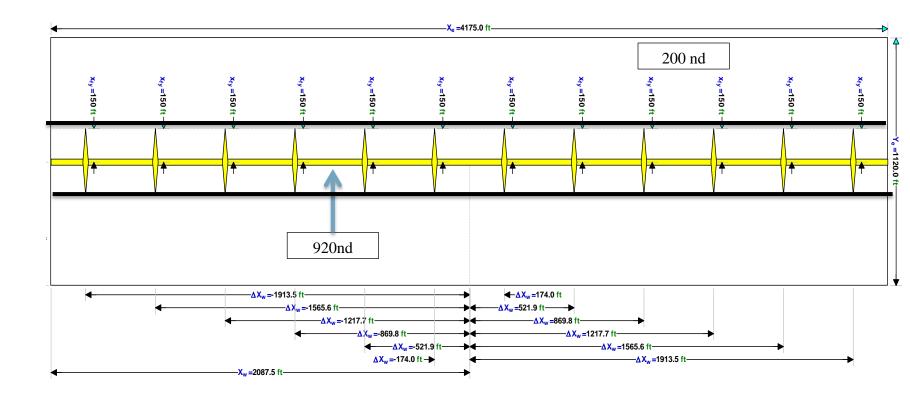

Duong Forecast

Field Data Set

- 250 Well Dataset
 - Barnett Shale (200wells)
 - Denton
 - Tarrant
 - Wise
 - Johnson
 - Fayetteville Shale (50 wells)
 - Van Buuren
 - Drilling Info
 - Horizontal Wells
 - Monthly Rate Data
- 1st production starts 1/1/2004
- Range of total production: 30 to 85 months

Simulated Data Set

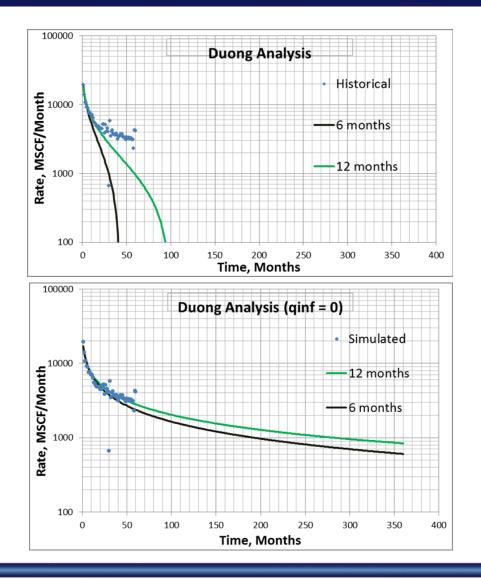

- Composite Model
 - Analytical Simulator (Fekete WellTest)
 - SRV permeability different from Outer Matrix permeability
- Barnett (25 simulations)
 - 133874(<u>Chong et al. 2010</u>), 146876(<u>Cipolla et al. 2011</u>), 144357(<u>Strickland et al. 2011</u>), 96917(<u>Frantz et al. 2005</u>), 125530(<u>Cipolla et al. 2010</u>) and147603(<u>Ehlig-Economides and Economides 2011</u>)
- Marcellus (25 simulations)
 - 133874(<u>Chong et al. 2010</u>), 125530(<u>Cipolla et al. 2010</u>), 144436 (<u>Thompson et al. 2011</u>) and 147603(<u>Ehlig-Economides and Economides 2011</u>).
- Properties Varied:
 - Fracture stages, fracture length and fracture conductivity.
 - Stimulated Reservoir Volume (SRV) permeability
 - In accordance with the ranges in the above papers


Barnett Shale Simulation (Base Case)

Hz Multifrac-Comp Model

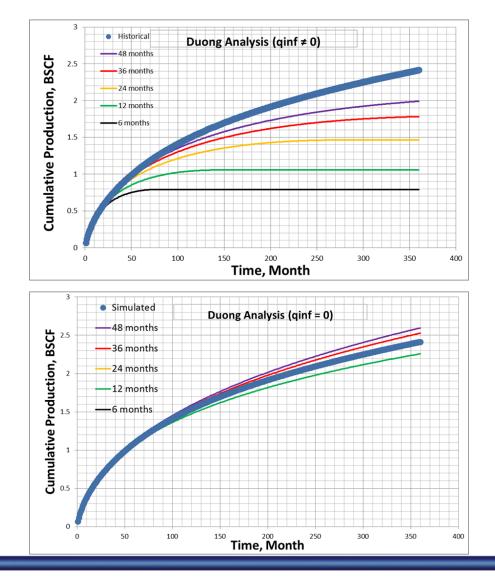
Schematic

Marcellus Shale Simulation (Base Case)

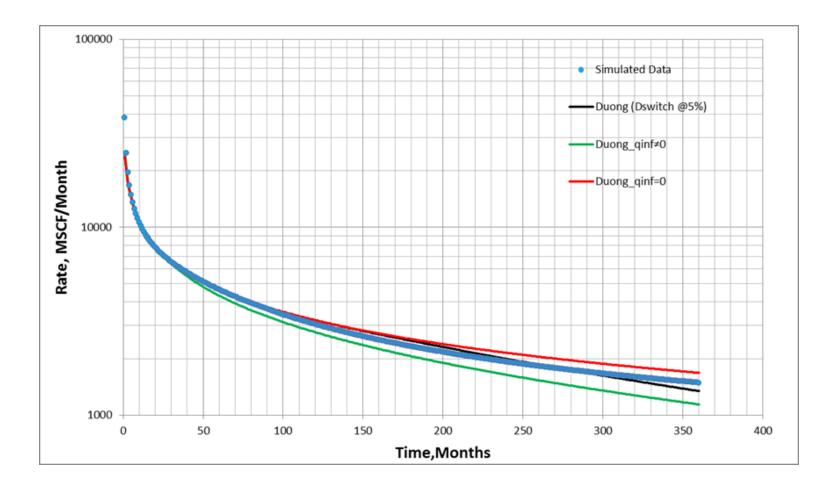


Fixes to the Duong Model

- Use of qinf
 - Not suggested for short term data.
 - Debatable for long-term data
 - Simulated data can solve the conundrum of whether qinf is necessary or not.
- Modified Duong
 - Accounts for fracture interference
 - Dswitch of 5%, i.e. when decline rate reaches 5%, forecast switches to Arps



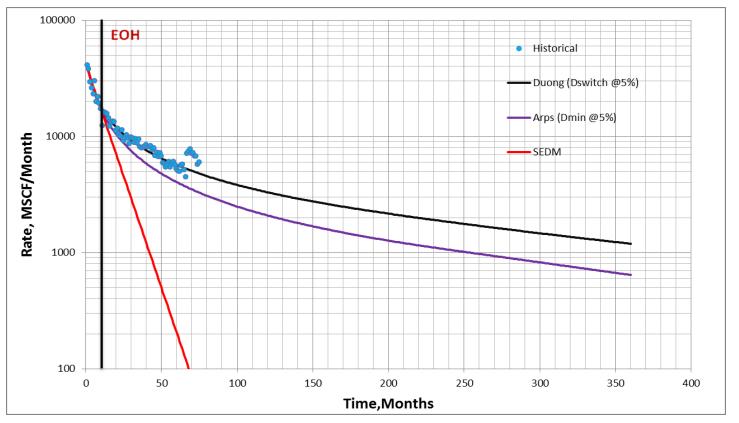
Using qinf Does Not Work For Short Term Field Production Data



Using q_∞ For Simulated Production Data Does Not Work Well

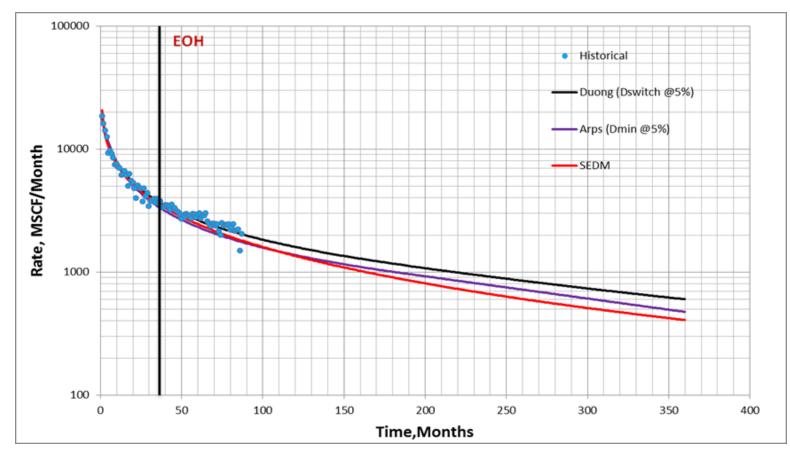
Modified Duong (Dswitch @5%) Works Better Than the Original Duong

Individual Well Field Production Data



Comparison of The Modified Duong, SEDM and Arps For a Field Data Set

listory Matched		Duong_Dswitch@5%	SEDM	Arps (Dmin 5%)
6	Mean	-15.98	40.91	10.97
	Std.Dev	29.24	39.06	33.16
	% Wells <15 % error	45.60	22.00	43.20
12	Mean	-7.77	6.44	5.04
	Std.Dev	17.48	27.75	22.57
	% Wells <15% error	66.80	48.40	63.20
18	Mean	-6.90	5.06	3.03
	Std.Dev	14.41	21.90	19.01
	% Wells <15 % error	71.60	59.20	69.20
24	Mean	-2.49	4.49	2.21
	Std.Dev	16.13	20.51	18.92
	% Wells <15 % error	72.80	64.40	71.60
36	Mean	-5.04	4.41	2.77
	Std.Dev	17.88	21.93	22.54
	% Wells <15 % error	71.93	64.91	68.86
48	Mean	-5.45	1.63	-0.05
	Std.Dev	18.08	27.12	26.99
	% Wells <15 % error	77.16	69.04	77.66

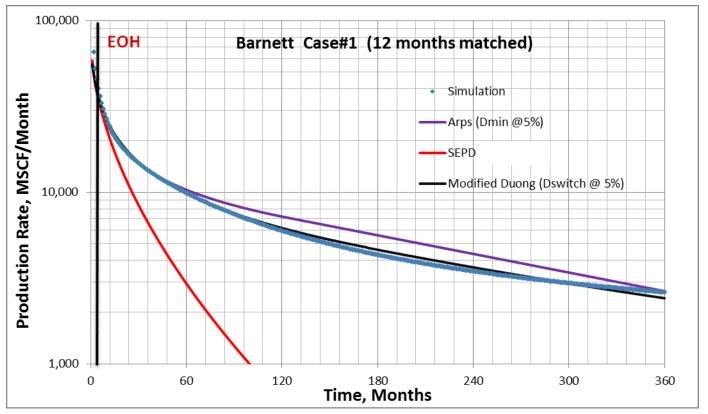


How Well Do Different Models Forecast With Short Term Data ?

Comparison of various empirical models for API# 42-121-32245, matching 12 months of historical data.

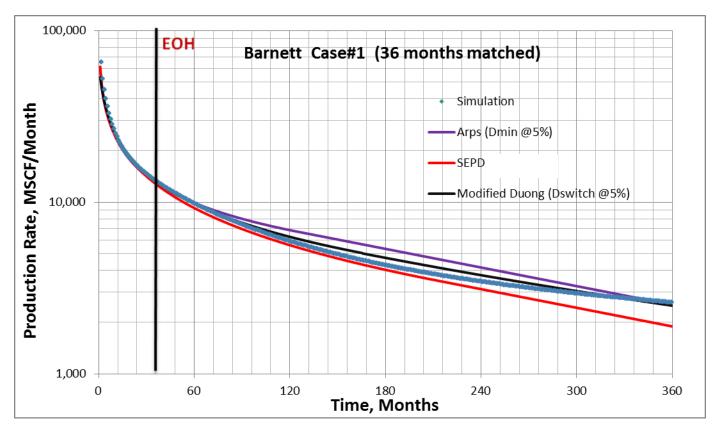
How Well Do Different Empirical Models Forecast With Long Term Data ?

Comparison of various empirical models for API# 42-497-35453, matching 36 months of historical data.


Individual Well Simulated Data

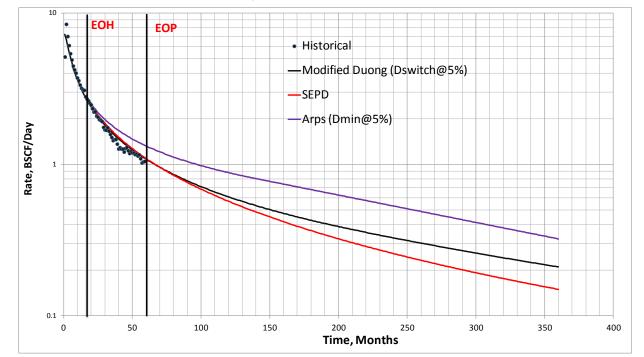
Discrepancy (% error) in Remaining Production For the 3 Empirical Methods on Simulated Wells

	Discrepancy (Error %) in remaining production				
History Matched		Duong_qinf=0 (Dswitch @5%)	Arps (Dmin @ 5%)	SEPD	
6	Mean	22.23	-12.38	38.62	
	Std.Dev	19.56	19.80	14.39	
12	Mean	5.55	-15.17	22.37	
	Std.Dev	17.43	20.98	17.96	
18	Mean	-4.33	-18.27	21.40	
	Std.Dev	16.09	21.16	19.36	
24	Mean	1.00	-18.64	14.96	
	Std.Dev	13.10	18.47	18.31	
36	Mean	-13.97	-16.79	10.32	
	Std.Dev	9.84	13.31	16.24	
48	Mean	-13.88	-13.75	10.41	
	Std.Dev	7.99	10.81	18.72	


How Well Do Different Models Forecast With Short Term Data ?

A Barnett Shale simulation matching 12 months of history

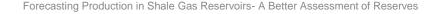
How Well Do Different Empirical Models Forecast With Long Term Data ?


A Barnett Shale simulation matching 36 months of history

Field Grouped Data Sets

How Well Do Different Models Forecast For Short Term Grouped Data ?

Johnson County (130 wells)- 18 months matched


Method	Reserves (After EOP)(BSCF)	Avg Reserves (After EOP) BSCF/Well	%Discrepancy
Arps (Dmin@5%)	197.168	1.517	-17.7
Modified Duong (Dswitch@5%)	132.856	1.022	-4.8
SEPD	116.648	0.897	-7.2

How Well Do Different Models Forecast For Long Term Grouped Data ?

Denton County (81 wells) – 36 months matched

Method	Reserves (After EOP)(BSCF)	Avg Reserves (After EOP) BSCF/Well	%Discrepancy
Arps (Dmin @5%)	90.007	1.111	-2.0
Modified Duong (Dswitch@5%)	75.244	0.929	1.5
SEPD	71.074	0.877	2.2

What About Oil Wells?

- Same as Gas Wells
 - D_{switch}/D_{min} values vary for different plays
 - Interference
- Account for solution gas
- Operational issues need to be accounted for
 - Pump Issues, Paraffin Issues
 - Higher reserves potential if issues fixed

Conclusions

- Previously mentioned modifications to the Duong makes the Duong model even more robust and accountable for fracture interference
- The Modified Duong (D_{switch}) method provides more accurate results than the SEDM and Modified Arps (D_{min}) Model when more than 12 months of historical production data is available, although some error is still associated with those forecasts
- None of the models studied produces accurate forecasts with 6
 months or less of historical production data
- For grouped well sets the SEPD and Modified Duong (D_{switch}) work exceptionally well providing reasonable forecasts

Acknowledgements

Crisman Institute at Texas A&M for their funding

Quiz

- With greater than 12 months of historical production data which of these decline models provided the lowest error in remaining production for an individual well?
 - a. SEPD/SEDM
 - b. Modified Duong (Dswitch @ 5%)
 - c. Arps (Dmin @ 5%)
 - d. Duong

Forecasting Production in Shale Gas Reservoirs- A Better Assessment of Reserves

Occidental Petroleum Corporation
GCS Reservoir Study Group
Anadarko Petroleum Convention Center
I0th May
Krunal Joshi, Reservoir Engineer

Occidental Petroleum Corporation