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Thank you Sponsor

SPE-GCS Drilling Study Group



The SPE-GCS conferencing software being used allows meeting hosts and other 
authorized users to record conference sessions. Part or all this conference session 

may be recorded by the host and/or other authorized persons, and your participation 
in this conference shall constitute your consent to the recording of this conference 

session.

SPE holds itself and its members to the upmost ethical standard. Event registrants 
are not authorized to record or distribute the event, nor any sections of it.
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Please Note

SPE-GCS Drilling Study Group
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Webinar Etiquette

Please use “Chat” to send your questions 

The moderator will review the questions and pass them to the 
speaker

Please remember to “mute” yourself and turn off your web cam

Type Question 

Here

SPE-GCS Drilling Study Group
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Today’s Speaker

Dr. Yuxing Ben is a reservoir engineer at Occidental, where she develops 

hybrid physics and data-driven solutions in the subsurface engineering 

technology group. She was the principal developer of machine learning 

technology for Anadarko's real-time drilling and hydraulic fracturing platforms. 

She won the best paper award from URTeC 2019 and was selected as a 

SPE distinguished lecturer for 2021. 

Prior to Anadarko, Dr. Ben served as the technical expert for Baker Hughes' 

hydraulic fracturing software—MFrac. She has developed complex fracture 

model for Halliburton and was a postdoc at MIT. She has authored more than 

30 papers and holds three US patents. 

She earned a BS in theoretical mechanics at Peking University, and a PhD in 

chemical engineering from the University of Notre Dame.

SPE-GCS Insert Study Group
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Primary funding is provided by

The SPE Foundation through member donations 

and a contribution from Offshore Europe

The Society is grateful to those companies that allow their 

professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers 

Distinguished Lecturer Program
www.spe.org/dl
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Yuxing Ben

Machine Learning Applications for Optimizing 

Real-Time Drilling and Hydraulic Fracturing



Outline
• Background

– What is Machine Learning (ML) 

– Types of Machine Learning

• Application Cases

– Development and Deployment of Real-Time Drilling State Identification with ML

– Real-Time Hydraulic Fracturing (HF) Pressure Prediction with ML

– Real-Time HF Cost Optimization with ML and Model Predictive Control

• Takeaways and Future Development
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What is Machine Learning?
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Image captured from https://www.youtube.com/watch?v=2QgyH29x0_M

Can machines 

learn from 

experience?



What is Machine Learning?

• “Machine learning (ML) is a field of study that gives computers the ability to learn 
without being explicitly programmed.” (Arthur Samuel, IBM, 1959)
– The problem cannot be solved by “If Then” statements. 

– Machine-learning programs adjust themselves in response to the data they’re exposed to.   
(https://skymind.ai/)

• “The field of machine learning is concerned with the question of how to construct 
computer programs that automatically improve with experience.” ( Tom Mitchell, 
Carnegie Mellon University, 1997)

• ML is one of the ways we expect to achieve Artificial Intelligence (AI).
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Types of Machine Learning
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https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f by Hunter Heidenreich

https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f


Machine Learning in Oil and Gas
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Why Build a Real-Time Drilling Platform?

➢ Engineers and field crews have multiple conflicting priorities

❖ Minimize wellbore tortuosity

❖ Drill the lateral in the zone

❖ Drive efficient, repeatable performance

➢ Practical priorities tend to outrank optimization efforts

➢ Asset teams are asking for automated, real-time analysis tools to:

❖ Enable fast, data-driven decisions

❖ Deliver repeatable workflows 

❖ Lay a foundation for future technological advancements
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To improve drilling efficiency and optimization through real-time 

monitoring and automation

(Ben, Y et al. URTEC-2019-253)



Drilling Data Analytics
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• Starts with second-by-second data

• Component layer uses rules to classify the status of 
major rig system

• Apply a second set of rules to determine a rig state

• Accuracy is extremely high except for Drilling because:

• mud motor is used and “rocking” is used during 
sliding (SPE 87162)

• must be further classified into rotate or slide 
drilling

Component Layer

17 Rig States

Real-Time Drilling Data 

(Raw Sensor Data)

OBDA 

status
Slip 

status

Pump 

status

Top Drive 

status

Pipe Direction  

status

In Slips Pumps Off

In Slips Pumps On

Drilling

Reaming In Pumps On

Reaming Out Pumps On

Slack Off Pumps On

Reaming Stationary Pumps On

Circulating

Reaming In Pumps Off

Reaming Out Pumps Off

Slack Off Pumps Off

Pick Up Pumps Off

etc.

Note: OBDA (if bit is on bottom and drilling ahead)



Threshold Rules Do Not Reliably Distinguish Rotate/Slide Drilling 
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During slide drilling, surface RPM fluctuation 

if rotation is added to re-orient or a top drive 

oscillator is used to reduce static friction

During rotate drilling, surface 

RPM fluctuations due to set 

point adjustment, drilling 

dysfunction, or torque limits

Threshold



Solution: Convert Drilling Time Series into a One-Dimensional 
Image Classification Problem 
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• Feature Selection

– RPM and torque

– Well section 
(vertical, curve, 
lateral) 

• Labeled 10 wells from 
the Delaware Basin and  
12 wells from DJ Basin

– About 11,000,000 
rows of data

Y (drilling state 
at present)

Moving window to look back 20 seconds
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Results from Three Different Classification 
Machine Learning Approaches

• Random forest 

• Convolutional Neural Network 
(CNN)

• Hybrid Recurrent Neural Network 
(RNN)+Convolutional Neural 
Network(CNN)

19

Delaware Basin



Deployment and Lessons Learned

• Version 1 deployed before 7/2018

20
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• Version 2 deployed 12/2018

• Lessons Learned

• Wellbore section (vertical, curve, lateral) 
are not always available 

• Accuracy in production was lower than 
expected

• Model Evolution
• Removed model dependency on wellbore 

section
• Added more training data and developed a 

universal model 

• Version 5 deployed 4/2019



Architecture of the Real-Time Drilling System
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Terminology

WITSML Wellsite information transfer standard 
markup language

GKE Google Kubernetes Engine

MS SQL Microsoft Structured Query Language

PWP Planned Well Path

ECD Equivalent circulating density

MongoDB Data base by Mongo DB Inc

Live UI Live User Interface



Application and Use Cases
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• Directional Analysis

• Accurate rotate/slide 
detection allows visualization 
of motor orientation 
(toolface) while sliding

• Can compare slide 
performance to surveys and 
drilling parameters to 
diagnose problems and 
optimization opportunities

▪ Rotary drilling is represented by the gray colored stripes;

▪ Slide drilling is represented by the black colored strips;

▪ The motor orientation is represented by the pink line



Application and Use Cases, continued
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• KPI
• Pad-level analysis shown 

across six wells
• Rapidly compare 

slide/rotate footage 
percentages 

• Analyze drilling rates 
(ROP) between rotate 
and slide drilling 
between wells



Why Do We Need Real-Time Hydraulic Fracturing (HF)?

• HF costs twice as much as drilling for onshore wells
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(Ben, Y et al. SPE 199699, 2020)HF Cost

Wellhead Pressure Slurry Rate

• If we can predict wellhead pressure, we can 
• Prevent screen-out
• Optimize HF cost in real time by adjusting the pumping schedule
• Help completion engineers make better decisions in real time



Why Data-Driven Model?
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• Wellhead pressure includes the following contributions:

WHTP = BHFP – Phydrostatic + Ppipefriction + Pperforation + Pnwb

Wellhead 

treating 

pressure

Bottomhole 

fracturing 

pressure

Near-wellbore 

pressure

• Physics-based model 
• Make assumptions
• Cannot simulate each of the contributions very well, such as the 

near-wellbore tortuosity



Data Visualization Shows Strong Correlation Between 
Wellhead Pressure and Proppant Concentration
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Wellhead Pressure

Bottom hole proppant concentration

Proppant concentration

fr concentration

Slurry rate



Data Analysis Shows Strong Correlation of Wellhead 
Pressure to Its History and Proppant Concentration
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Autocorrelation coefficients show 

wellhead pressure depends on its past 

values.                             

Pearson correlation coefficients shown in the 

colored map summarize the strength of the 

linear relationship between variables



Wellhead Prediction by Neural Network

28

Slurry rate (t-120)
Prop conc (t-120)
Fr conc (t-120)
Wellhead Pres(t-120)

Slurry rate (t-119)
Prop conc (t-119)
Fr conc (t-119)
Wellhead Pres(t-119)

Slurry rate (t-1)
Prop conc (t-1)
Fr conc (t-1)
Wellhead Pres(t-1)

…
Input

Wellhead Pres(t) Wellhead Pres(t+1) Wellhead Pres(t+119)… Output
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Time

Apply Continuous Learning to Real-Time Wellhead 
Pressure Forecasts for Better Accuracy
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Neural Network Forecasting Errors Are Shown by the 
Uncertainty Cones with Grey Shapes
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Computation Is Fast Enough for Real-Time Forecasting

RNN (Recurrent 

Neural Network)

MLP (Multi-layer 

perceptron)
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Real-Time Data Streaming on a Cloud Platform
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Real-time Data 
Collection from 
Frac Equipment

On-Premises 
Database

Data 
Streaming

Data 
Processing

Data 
Warehouse

Real-time HF 
User Interface

This can be realized by any cloud platform by leveraging the cloud functionality.



Deploy Continuous Learning Model on the Cloud
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GPU(Graphics 

processing unit)

(cloud.google.com; azure.microsoft.com; aws.amazon.com)



Hydraulic Fracturing Cost Remains the Same When 
Slurry Rate and Pressure Are in a Certain Range
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Can we adjust pumping 
schedule to save 
completion costs on the 
hydraulic horsepower? 

Ben, Y et al. SPE 199688, 

2020. Reported by Drilling 

contractor.



Optimization by Model Predictive Control

• Develop a model based on existing data and make prediction about 
future behavior

• Set up constraints on the wellhead pressure and slurry rate, 
proppant concentration, and friction reducer concentration

35

Driving with Google Map



Field Case: 
Reducing Fr at the Heel Stages to Save Cost 
• Cost of hydraulic horsepower is the same

• Average wellhead pressure decreases from toe stage to heel stage

36

Well No. 1 Well No. 2



Predict Wellhead Pressure with System Identification

• Basic representation:
𝒅𝒙(𝒕)

𝒅𝒕
= 𝑨𝒙 𝒕 + 𝑩𝒖(𝒕)

• Focus on variables that can be adjusted in real time by a completion 
engineer

𝑥 𝑡 :𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑 𝑃𝑟𝑒𝑠

𝑢 𝑡 : ቐ

𝑝𝑟𝑜𝑝 𝑐𝑜𝑛𝑐
𝑠𝑙𝑢𝑟𝑟𝑦 𝑟𝑎𝑡𝑒
𝑓𝑟 𝑐𝑜𝑛𝑐
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Proposed Workflow for Model Predictive Control (MPC) 
to Optimize Costs



Scenario 1: 

Constraint: ∆𝑝=50 𝑝𝑠𝑖

Assumption: Increasing 
50 psi won’t increase the 
cost on hydraulic 
horsepower

39

Cost Saving by Increasing Proppant Concentration and 

Reducing Fr



Scenario 2: Constraint: ∆𝑝=50 𝑝𝑠𝑖, 

Assumption: Increasing 50 psi won’t increase the cost of hydraulic horsepower
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Cost Saving by Increasing Proppant Concentration and 
Reducing Fr

𝑀𝑎𝑥𝑝𝑟𝑜𝑝 = 0.5, 𝑎𝑛𝑑 𝑀𝑎𝑥∆𝑝𝑟𝑜𝑝 = 0.25



Takeaways 1: Summary of the Examples

• What have we done? 

– Developed and deployed a universal machine learning model with high accuracy 
for all onshore unconventional rigs in the whole company

– Demonstrated how to use the Cloud to deploy a machine learning model that 
can be updated in real time

– Developed a workflow to optimize hydraulic fracturing costs

• What have we learned?

– Machine learning can perform much better than a rule-based model.

– A successful machine learning application requires collaboration of data scientist, 
drilling/completion engineers, data engineers, and software developers.
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Takeaways 2: Future Development - Algorithms
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Takeaways 3: Future Development – Infrastructure
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Cloud
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Edge 

Computing

Data 

Storage

Cloud 

Computing

Data 
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Takeaways 4: Risks and Remedies

➢ Scenarios are not represented in the 
training data. 

➢ In case of failure, it might be very 
difficult to establish responsibilities.

➢ 'Hidden' biases derived from the data 

➢ Malicious adversaries can potentially 
attack the systems by poisoning the 
training data
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Risks Remedies

✓ Using engineering judgement 

✓ Set up alerts in the system to identify 
outliers

✓ Establish liabilities between service 
companies and operators 

✓ Collaborate with other industries to 
bring best practices to the oil and gas 
industry

(https://www.europarl.europa.eu/RegData/etudes/STUD/2019/624261/EPR

S_STU(2019)624261_EN.pdf)
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Q & A
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Society of Petroleum Engineers 

Distinguished Lecturer Program
www.spe.org/dl

Your Feedback is Important

Enter your section in the DL Evaluation Contest by 

completing  the evaluation form for this presentation

Visit SPE.org/dl

#SPEdl
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Upcoming Webinars (11:30 AM – 1 PM)

SPE-GCS Drilling Study Group

Date Venue Theme

17-Mar-22 Webinar 
“Drill Rig Control Systems: Detecting  Auto Driller dysfunction 

and Improving Behavior” by Paul Pastusek, ExxonMobil

21-Apr-22
Hybrid 

Petroleum Club

“Energy Insights” by Congresswoman Lizzie Fletcher, Texas 

7th Congressional District

*5-May-22

TBC

Hybrid 

Petroleum Club

“Drilling Technology Research Overview” by Dr. Ozbayoglu, 

University of Tulsa
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Please remember to update your email preferences so that you are getting all of the emails for 

the various study groups/committees using this link:

Using the GCS Website (Option 1)

Main Page spegcs.org 🡪 Member Resources 🡪 Stay in Touch 🡪 Click here to Update Email 

Preferences 

Update Email Preferences
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Please remember to update your email preferences so that you are getting all of the emails for the various 

study groups/committees using this link:
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