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General Description
Industry is always looking to do more with less. How can we maximize the use of the massive 
amounts of data being collected?

• Drilling inefficiencies and complications
• Desire for better subsurface visibility

• Log coverage, quality, and averaging
• Limited horizontal logging

• Visualization of events during drilling and/or completions to identify/explain the 
occurrence and predict and improve performance on future wells

Can this be accomplished with a 
dataset that all wells have and doesn’t 
increase costs?



General Description
The modeling process results in a core-
calibrated reservoir description that 
provides visibility into a well’s 
geomechanical and pore pressure 
characteristics utilizing only drilling data
• Outputs

• High resolution UCS, Young’s Modulus, 
Poisson’s Ratio, Brittleness in vertical 
and horizontal direction 

• Optimized mud weight windows from 0 
– 90 degrees

• Pore pressure (vertical and horizontal)
• Applications

• Optimized casing points
• Integration of completions data where 

available
• Identification of fractures/faults
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Simplified Methodology
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Input Curves
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Drilling Forces

Ft – Tangential Forces = f(WOB, ROP)

Fc – Cutting Force = f(Torque, ROP)

Fs – Shear Force = f(Ft, Fc)

Fn – Normal Force = f(Ft, Fc)

Sonic and Geomechanical Properties 
are based on core-calibrated 
relationships between drilling inputs 
and forces.
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Pore Pressure
• A normal pressure trend from sonic log data shows a 

reduction of travel time with compaction due to increasing 
over pressure with depth (Hottman and Johnson).

• The normal pressure trend is determined through 
comparison of multiple wells throughout the area of study 
(Reference Example).
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• An observed travel time curve is compared and quantified based on the normal 
compaction of shales curve.

• A pressure gradient can then be derived by using the function of the difference in travel 
time from the normal compaction and published DFIT data.
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Principle Stresses
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Principle Effective Stresses

Minimum Mud Weight

 ଷ ଵ

Failure occurs when F < 0

Reservoir Geomechanics. Zoback. 2007

Determination of a safe mud window and analysis of wellbore 
stability to minimize drilling challenges and non-productive time. 
Aslannezhad, Manshad, Jalalifar 2015
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Controls on Minimum Mud Weight
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Optimized Drilling Parameters
• Operator was consistently facing issues 

with bit jamming and complete loss of 
wellbore

• By comparing the mechanical properties, 
efficiency parameters, and force 
parameters the following was 
determined:

• Optimized weight on bit
• Optimized revolutions per minute
• Minimum mudweight necessary

• With these parameters, they were 
successful in their drilling while not losing 
time due to increased mudweight
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Fracture Indicators
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• Sharp increases in modeled 
brittleness result from a change in 
torque read by the drilling rig

• Calculated Young’s 
Modulus and 
Poisson’s Ratio will 
show similar spikes

• Running across these 
fractures can often 
cause changes in 
azimuth to occur



Fracture Indicators
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Full Integration
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3D Brittleness View
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Conclusions

• The drilling data provides a rich dataset for investigation. Through 
careful correlations and calculations, this data can be used to 
derive geomechanical properties of the reservoir being 
penetrated.

• Continued derivations provide estimates of rock failure criteria 
and fracture pressures.

• When combined with broader reservoir understanding, these 
models can be used to optimize drilling and completions 
procedures.

• Specific signatures have been identified for fractures along the wellbore.
• Persistent application of the model in a reservoir can also allow for 

identification of specific common rock fabrics and geological features.
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Thank you!
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