The key to deciphering your well

Geomechanical Properties, Fracture /
|dentification, and Formation |
Pressure from Drilling Data

RESERVOIR OFTIMIZATION
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General Description

Industry is always looking to do more with less. How can we maximize the use of the massive
amounts of data being collected?

* Drilling inefficiencies and complications

* Desire for better subsurface visibility
* Log coverage, quality, and averaging
e Limited horizontal logging

* Visualization of events during drilling and/or completions to identify/explain the
occurrence and predict and improve performance on future wells

Can this be accomplished with a
dataset that all wells have and doesn’t
increase costs?
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Simplified Methodology

Drilling Parameters and Data

Force, momentum,

v and material balance

Drilling Forces

Internal correlations

v and derivations

Rock Mechanics and Sonic

Properties 7




= - =
p== 1 = [S==|=l==1==
1! =t = - = - —e— =
. = =3 L
et T
L - — — el o
e e By |
4 B | o s =
= ===
o | ————=
e
ey = I
L | et 1=
B ==
bl | [ et [,
|| [t =+ .
S gy — o et =
==
L || =
=
L] | e - =
|| = |
= -4
P = — —1

I
v

v

L

AAIATRIAIA TR A & B

i st |

]
Lol
li{;

1

e '\»',' ot

]
1
'1u
ihy
l\

T

T
N Y0 D O

|
|

[

e

1
AT

T

| -
i [ IS = o
3 H E ; =
- B =E:
& =
T B B = =
= = 1=
3|1 o =
iy o E
— = -
T1 —F = < = L1
" - O =
= b5} | ==
s b [oB :
FiER e |8 w || 13
O =N 3 it
— |- | 1] =N I-==="_1
raln = m =
g - |
- ] Sh i il
- B =~ T
H =
u S
=
Mo W
3
=

Block Height

= - 0| < BB
| o = - — B
Mﬂnsu‘ /M | - m Ll
‘.rnmmlllu O M W - [_ﬂm =i
A A = Mﬂ" ~ ] 1|9k

Input Curves




Drilling Forces

Ft — Tangential Forces = f(WOB, ROP)
Fc — Cutting Force = f(Torque, ROP)
Fs — Shear Force = f(Ft, Fc)

Fn — Normal Force = f(Ft, Fc)

Sonic and Geomechanical Properties
are based on core-calibrated
relationships between drilling inputs
and forces.




Pore Pressure

* A normal pressure trend from sonic log data shows a Reference Example
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over pressure with depth (Hottman and Johnson). o

* The normal pressure trend is determined through = 2 s
comparison of multiple wells throughout the area of study e N -
6500 rm |

(Reference Example).

7000 - - 266 867
Reference Example (Flipped Axis)

300 400

0
333.333

Deviation from Normal
Trend = Indicator of
Higher Pressures 1333

266.667

GAMMA
e Depth
N DEPTH
g 8 8 8 B
GAMMA

e
) 100 200
9
O 10500
133.333 11000 B8
o
1500
50657 12000 G
e o] A 0
100 30
” o (LB DTC

—aissessssss— Travel Time Decrease
B
i

1230[R0O00 11500 11000 10500 10000 9500 9000 8500 8000 7500 7000 6500 6000 5500 5000 45@300

DEPTH .
e Travel Time Decrease



Pore Pressure Modeling —

Pressure Gradient Determination

An observed travel time curve is compared and quantified based on the normal

compaction of shales curve.

A pressure gradient can then be derived by using the function of the difference in travel
time from the normal compaction and published DFIT data.
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*Estimation of Formation Pressures from Log-Derived
Shale Properties, C. E. Hottman and R.K. Johnson
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Principle Stresses

S, = J p(h)dh

)
1—v

Onmin = P. = *(av—Pp)+Pp+e*E

S

Ohmax = Onmin + Stress Anisotropy




Principle Effective Stresses

(0’.:; + Ogg + \/(0';.: - 098)2 + 4T92;)

(0:: + Ogg — \/(023 - 099)2 + 4T92)

Reservoir Geomechanics. Zoback. 2007

gimmax =

(N7 I NI

9mmin =

Minimum Mud Weight

F = (o.+qx03)— 0y
Failure occurs when F< 0

Determination of a safe mud window and analysis of wellbore
stability to minimize drilling challenges and non-productive time.

Aslannezhad, Manshad, Jalalifar 2015 11



Controls on Minimum Mud Weight
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Optimized Drilling Parameters

* Operator was consistently facing issues
with bit jamming and complete loss of
wellbore

* By comparing the mechanical properties,
efficiency parameters, and force
parameters the following was

determined:
e Optimized weight on bit
e Optimized revolutions per minute
e Minimum mudweight necessary

* With these parameters, they were I
successful in their drilling while not losing - |ROP
time due to increased mudweight




Fracture Indicators

* Sharp increases in modeled
brittleness result from a change in
torque read by the drilling rig

* Calculated Young’s
Modulus and
Poisson’s Ratio will
show similar spikes
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* Running across these
fractures can often
cause changes in
azimuth to occur

o |
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Full Integration
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3D Brittleness View
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Conclusions

* The drilling data provides a rich dataset for investigation. Through
careful correlations and calculations, this data can be used to
derive geomechanical properties of the reservoir being
penetrated.

* Continued derivations provide estimates of rock failure criteria
and fracture pressures.

* When combined with broader reservoir understanding, these
models can be used to optimize drilling and completions
procedures.

e Specific signatures have been identified for fractures along the wellbore.
e Persistent application of the model in a reservoir can also allow for
identification of specific common rock fabrics and geological features.
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Thank you!



