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Hydraulic — Natural Fracture Interaction

 Fundamental phenomenon needed for a better
understanding of unconventional wells

* Very complex physics to model = multiple
methods are available

* Limited data to validate models =
Microseismic is the only volumetric field data S R
that helps validate SOME aspects of this physics | -1 -

Mineback experiments
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FracGeo’s Approach to Modeling HF-NF

* Use continuum mechanics augmented with O
discontinuities' modeling to describe the HF-NF Q T @
interaction / \®

* Use the particle based method Material Point S
Method (MPM) to resolve the computational [ /\
challen ges. s~ FracPredictor™ 551522",»

* Use the Continuous Fracture Modeling (CFM) 19 N /
approach to describe the distribution of natural @ SV
fractures in the reservoir N Y

e Validate (NOT CALIBRATE) every geomechanical
result with available field data (drilling, microseismic,
pressure treatment, production, etc.)
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Gulf Coast Section

Removing Geomechanics from its silos: GMX from drilling to well interference optimization

Torque Comparison

) 10 h S:bS) 30 10  Reservoir differential stress and strain validated with microseismic data
9000 >
- 11000 ))‘__
= 13000 SRS,
g' 15000 ’ ,’
17000 ¢ ’
19000
® Torque on Bit Calculated TQ (klbs)_Downhole

TQ (klbs)_Surface

Geomechanical properties, pore pressure,
stresses and natural fractures predicted from

surface drilling data and CMSE i i
g Fully coupled Fast Marching Method (FMM) Geome_:chanlcally constrained 3D planar
Frac simulator

flow simulator for pressure depletion

Poroelasticity for well interference optimization
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Material Point Method (MPM)

CONTRACTOR REPORT

SANDS3 — 7044

Unlimited Release
uc-—-7o05

« MPM Originated from University of New ke
Mexico & Sandia National Lab

bz

A Particle Method for History-Dependent

« MPM is a powerful computational technique Materials
for solving solid dynamic problems;

RN R L
e i
Deborah Sulsky, Zhen Chen, Howard L. Schreyer I HH‘- ‘iu i l‘l‘ I ‘"|! ‘
The University of New Mexico i ||I|l i A AR
Albuquerque, NM 87131 =eseR 21e
SANDIA MATIONAL
LABORATORIES
Sraparecs o Sarcia Natonal Lsooratores Albuaueraue. Now Hexico 87185 TECHNICAL LIBRARY
an Livermore. Galformia 84550 for the United States Depariment of Enery
ont DE-ACO4-TEDPOOTED

» Used by Disney in Frozen and other movies
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Material Point Method (MPM)

* Powerful tool developed for solid dynamics problems (Sulsky,

Chen & Schreyer, 1994) | Fl'_
(A EE A "N p_
L, UZL/ |
* Particle method: discretization into points, called particles /A
:::::::_::::“.:::EEEE_EEE Al
* Particles handle all material information /[" Crack
%3:“::==:=:EEZEEEE:.::_:,=_KT0P
* Background grid associated with the particles, composed of /___ :::::‘:l"*-‘-‘-“_ Plane
elements. /::::::::!2:::‘::':‘:5555 il
/—:lz:%::ﬁ:::flit'ffffﬁff'
* At each time step, particles information are extrapolated to “\ Yl
the background grid to solve the equations of motion EREHHERE [\;\
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MPM Application to HF-NF Interaction

 Explicit Fractures using Fracture Mechanics (FM)
* CRAMP algorithm for explicit fracture modeling (Nairn, 2003)
 J-Integral calculation
* Cohesive zone model

=» The Continuous Fracture Model (CFM) provides the explicit description of the
fractures at different scales

e Continuum Damage Mechanics
* Anisotropic damage mechanics (ADaM) model (Nairn, Hammerquist, Aimene, 2017)
e Augments a constitutive law
» Uses the forth rank damage tensor by Chaboche (1979)

=» The CFM models and seismic attributes provide the necessary Anisotropic Damage

a
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Explicit Fracture in MPM

* J-Integral for fracture front parameters
* Jintegral calculate the energy release rate and fracture-tip stress intensity factors

J Integral
Contour

L~

+_Z

Crack

1—

» fracture tip parameters used to predict fracture initiation &
propagation direction

Stress field around fracture tip

& FrachGe
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Natural
fracture o

Hydr aulic

fracture
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Dilated joint
( b= ) Crossed joint
| (Blanton, 1982)
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Hydraulic fracturing benchmarks

* Fracture propagation path re-orientation to follow the maximum stress direction

Rock elastic properties
E=8.4 GPa

v =0.23

p =2.5g/lcm?3

Material toughness
G, = 2.55 J/m2

Initiation & propagation

Maximum energy release rate
& maximum hoop stress

Experimental fracture path Fracture path from MPM simulation
from Chen et al. 2010.
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Anisotropic Damage Mechanics Model (ADaM)

* The material constitutive law is augmented by an anisotropic damage tensor D
(Chaboche, 1979):
=(I-D)C,¢

* D depends on 3 damage variables (d,, d,, d,,)

* Damage initiation is controlled by “damage initiation laws” attached to the
material & damage propagation is perpendicular to the failure envelope
A |

O.+
T,=0.450, n 0,=0,

N
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Failure envelope
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Damage initiation and propagation
* The damage evolution is determined by three softening laws
T, -0, f.(5,) T,=7f(d,)  T.=7f(d.)

* The area under these softening laws are connected to tensile and shear
energies released by propagation of damage.

* Summary
* Damage parameters are strengths and toughness, along with failure envelop
shape.

* The damage model honors thermodynamics conditions for energy dissipation and
have direct correspondence to fracture mechanics of an explicit fracture.

4
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ADaM on general benchmarks tests

* Pre-cracked three-point bending specimen subject to dynamic impact
with the eccentricity of e =20 mm

20 T T T T T T
18f .
20mm 1] AR .
v=bm/s ;&> ",
14} i

O

-
N
T

Y Position (mm)
=)

re-crack 100mm [ MPM (mse) -\ \
PMMA — P o My \/ FEM(mh) |
- & ar Experiment |
‘ 400mm .’ 4r 3D Damage ]
' ' 2r FEM (K,=0)

Experimental results and FEM predictions (Nishioka et al., 2001) T
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ADaM on general benchmarks tests

* Pre-cracked three-point bending beam specimen subject to dynamic

impact.
20mm
v =bm/s o"‘_"'
100mm
PMMA
[ 4 R

ADaM results capture well
the mixed mode
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ADaM vs. FM on general benchmarks tests

e Square rod with an initial fracture at 602 loaded in tension .

2 A
3D explicit fracture in MPM (S0
from Guo and Nairn, 2018 -~ =N Iﬁ\\
. . A - ‘l”’_r._ 2
3D damage mechanics in MPM = N < /5
<
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ADaM on a Layered Rock (Oreo Models)

* Numerical settings
e Test 11 in AlTammar and Sharma (2017)
* Perfect interface to match the well-bonded interfaces.
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Isotropic “Oreos” oo

Q' Asymmetric height
Early propagation

i
* Symmetric height
e Contained fracture
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Stress Profiles due to interfaces (no Shmin)

. Stress xx (kPa)

Top layer

Injection port
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stress
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How about anisotropy ? L —

* Single notched edge test in compression (A1)

20 T I I I
X o
Transversely isotropic Ez 3 8 GPa, Ex = 3Ez

| |sotropic E =8 GPa
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Compressive step Fracture pressurization step

-5 < 1 < I I
& 0.0 0.2 0.4 0.6 0.8 1.0
4, FracGecl E

. The Future of Shale Management, Di mens iO n |ESS ti me




Gulf Coast Section

DY
MPE g r
..\.-lfllﬁlnallonal
o -,

’s Modulus
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ANISOTROPIC

EVT

Major contrast between Horizontal and Vertical Young
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Anisotropy and Fracture Propagation
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Anisotropy
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Stress Profiles (no Shmin) : isotropic vs. anisotronic
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Fracture Mechanics vs. Damage Mechanics

* Damage mechanics model can start without initial fracture. In
fracture mechanics, an initial fracture is needed

* Connection between energy dissipated in ADaM and critical energy
release rate in FM makes ADaM equivalent to FM.

* Most failure proceeds by coalescence of damage into a fracture that
causes the material to become anisotropic.

‘
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Thank you

For more information, check out FracGeo’s publications

http://www.fracgeo.com/media.php?page=publications&year=2018
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