

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Understanding Liquid Loading Will Improve Well Performance

Rob Sutton

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Example of Successful Deliquification Program

Address the following question:

Can complex well geometries affect liquid loading characteristics and well performance?

State of the Industry - USA

Well Inventory - USA

Lateral Length

Cumulative Horizontal Well Lateral Length

Terminology

- Critical velocity
- Critical rate
- Static liquid column
- Terrain slugging
- Severe slugging
- Vertical Flow Performance
 - VFP Curves
 - Nodal Analysis

Analysis Techniques

- Vertical flow performance curves
- Critical velocity
- Production graphs
 - Rate vs Time
 - Pressure vs Time
- Flowing pressure surveys
- Acoustic survey

Complications

- Tubing set high above perforations
- Long completion intervals
- Complex well geometries
- Problem recognition

Production Data

Pressure Data

Critical Rate Vertical Flow Performance

Tubing on Bottom vs Tubing Set High

Vertical vs Slant Well Geometry

Unloading Velocity

- Equation derived for vertical well
- Developed from terminal fall velocity
 - Liquid density
 - Gas density
 - Largest liquid droplet
- Frequently termed "critical velocity"

Turner Unloading Velocity

$$v_c = 1.5934 \left[\frac{\sigma \left(\rho_l - \rho_g \right)}{\rho_g^2} \right]^{0.25}$$

Without ±20% adjustment Coleman Equation

where

σ

 v_c

- ρ_g = gas phase density, lbm/ft³
- ρ_L = liquid phase density, lbm/ft³
 - = surface tension, dynes/cm
 - = critical velocity of liquid droplet, ft/sec

Turner Unloading Velocity

0.25

$$v_c = 1.5934 \left[\frac{N_{we}}{30} \right]^{0.25} \left[\frac{\sigma(\rho_l - \rho_g)}{\rho_g^2} \right]$$

$$\frac{[\sin(1.7(90-\theta))]^{0.38}}{0.740767}$$

Belfroid et al SPE 115567 Angle Correction

where

- ρ_g = gas phase density, lbm/ft³
- ρ_L = liquid phase density, lbm/ft³
- σ = surface tension, dynes/cm
- N_{we} = Weber Number (use 60 for original Turner)
- θ = hole angle (Deg from vertical)
- v_c = critical velocity of liquid droplet, ft/sec

Well Angle Modification to Turner

SPE 115567

Evaluation Point

Yg

Assorted Well Profiles

Complex Profiles

- Vertical
- Build & Hold (Slant)
- S-Shaped
- Horizontal

 Complexity increases velocity or rate to unload well

Example Critical Velocity Profiles

- Effects on critical velocity
 - Pressure
 - Temperature
 - PVT
 - Gas gravity
 - Water salinity
 - Hole Angle

Vertical Well Case

(Variable Tubing Size)

Liquid Loading Bottom of Vertical Well

Casing-Tubing Flow Unload Velocity 53 ft/sec

Flow Velocity 2-in tubing - 53 ft/sec 4-in Casing - 14 ft/sec

Liquid Loading Bottom of Vertical Well

Static Liquid Column Pressure Profile

27

Horizontal Well Ideal Case

Complex Horizontal Well Profiles

Horizontal Well Profiles

Fayetteville

Horizontal Well Geometry

Severe Slugging

Severe Slugging Flow Map

Liquid Loading at 86° from Vertical

4-in Pipe

Stratified flow pattern

Cleanup and Load Recovery in Vertical Fractures is Affected by Gravity, Viscous, and Capillary Forces

Flow downward, co-current at any rate, assisted by gravity. Lower Sw, better recovery and gas perm.

Possible water coning around well causing further damage?

Flow upward, co-current at high rates, counter-current at low rates, hindered by gravity.

Higher Sw, poor load recovery, and low gas perm.

SPE 168612

Example Horizontal Well

Example Horizontal Well

- Velocity profile
- Gas velocity
 - Comparison with critical velocity
- EOT at 25°
 - Shallow
 - Slugging in curve
 - Slugging in horizontal

Factors Affecting Rate-Time Decline

Example of Successful Deliquification Program

Example of Successful Deliquification Program

Possible Solutions

- Velocity management
- Compression
- Foamers
- Artificial lift

Observations

- Complex Geometries require Higher Critical Velocity
- Proper Liquids Management offers significant benefit
- Liquids Management restores / maintains well productivity
- Liquids Management requires constant attention
- Determine Critical Velocity / Rate thru-out well
- Nodal Analysis offers insight to Long Term Performance

Questions?

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

