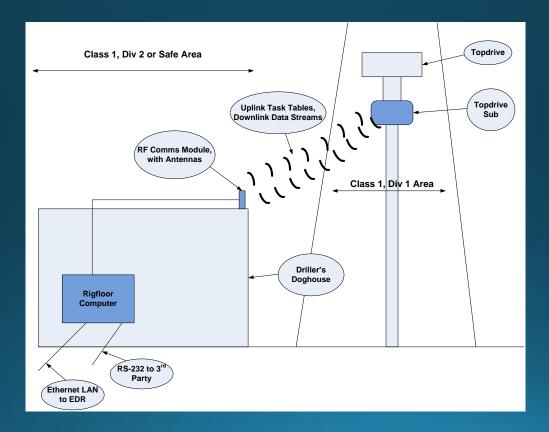
SPE GCS Annual Drilling Symposium

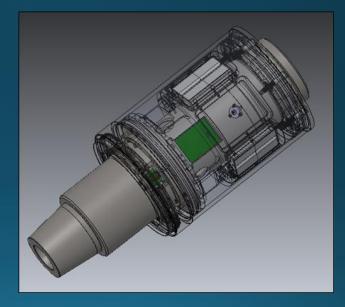
IADC/SPE-178864 An Instrumented Topdrive Sub System: Enabling


Greater Drilling Efficiencies via Innovative Sensing Capabilities

Thomas M. Bryant, APS Technology, Inc.

14 April 2016 Houston, Texas

Surface Drilling Mechanics System


Why?

- Many rig surface sensor systems:
 - Utilize indirect measurements
 - Possess sensors that are inaccurate, not regularly maintained
 - Have sensors with missing or no calibration credentials
 - Fixed sampling rates
 - Do not identify measurement quality
 - Use EDRs that have high latency times
- These factors impede drilling efficiency, and may lead to nonproductive operations

What?

A single point of service for a suite of measurements:

- Hookload
- Torsion
- Bending moment/angle
- Rotation speed
- Height (depth)
- Flowrate
- Mud density
- Mud pressure
- Mud temperature
- Drillstring vibrations

Primary System Features

• Reliability & quality

• Robust communications, calibrated sensors

Synchronicity of measurements

- Priority for valid data correlations
- Common sampling and data transmission clocks

Power conservation

- Sensor selection by rig activity
- Maximizes run time between battery recharges

Measurement Commonalities

Each sensor:

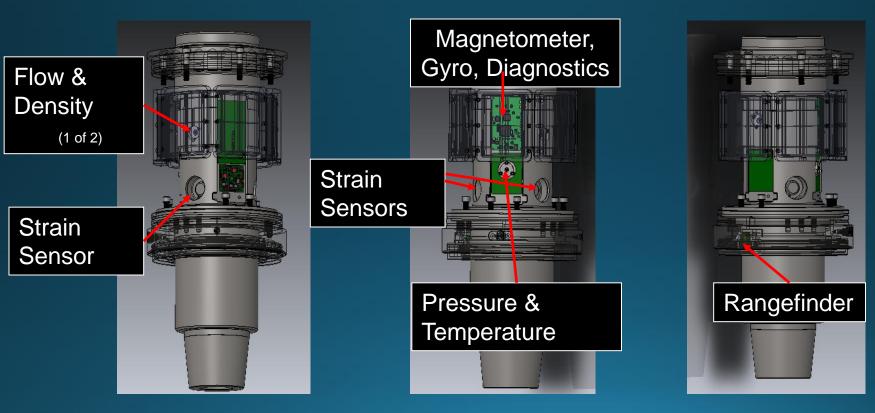
- has a documented calibration
- has high accuracy, low power consumption
- acquires measurements at user-configured frequencies
- located in weatherproof, noble gas filled enclosure

Each measurement:

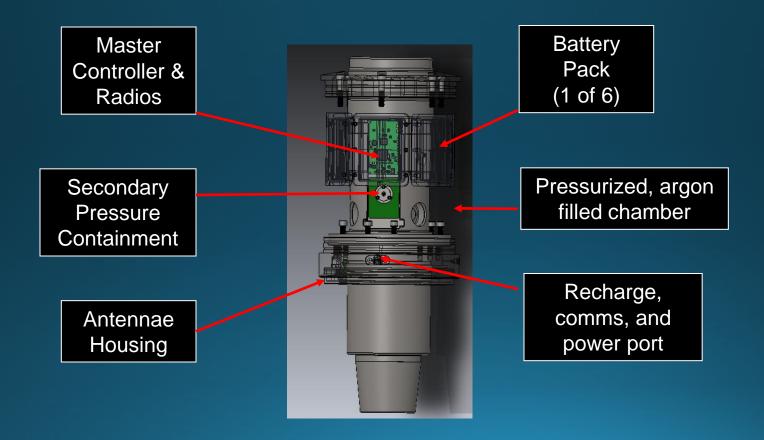
- is direct in relation to the load path
- is made simultaneously with all others
- is available on command

Measurement & Sensors

Measurement


Weight, torque, bending moment & angle Block height Rotation speed Pressure & temperature Flowrate and mud density Axial, torsional, lateral vibrations Strain gages
Laser rangefinder
Magnetometer, rate gyro
Thin film strain gages
Ultrasonic
Strain gages

Sensor Type


Measurement Ranges

Measurement	Estimated Range	
Tension/compression	o – connection yield	
Torsion	o – connection yield	
Bending moment	o – connection yield	
Rotational speed	0 – 200 rpm	
Height	0 – 150 ft	
Pressure (mud)	0 – 7500 psi	
Temperature (mud)	0 – 250 F	
Mud flowrate	100 – 1800 gpm	
Mud density	7.0 to 20.0 ppg	

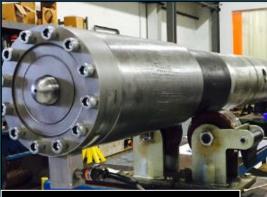
Primary SDM System Sensors

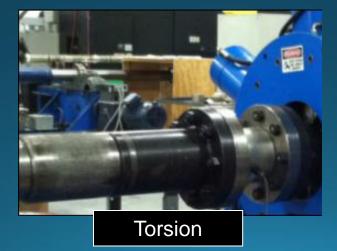
Other SDM Sub Features

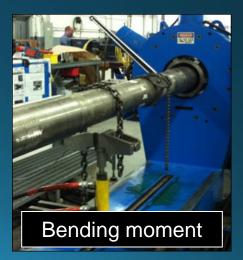
SDM Sub - Physical Envelope

- Connections
 - NC40, NC46, NC50, 6 5/8″, 7 5/8″
- Mandrel
 - 8.0", 10.0" OD, with 3.0", 3.25" ID
- Length 22 ¹/2" shoulder-shoulder
- Chamber OD 13.5" 16.0"

Hookload, Torque, Bending Moment & Angle

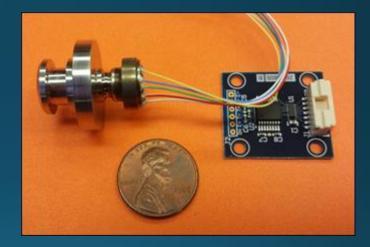

- Strain gage measurements from 3 pockets
 - Oriented at 120° in same horizontal plane
- Sensors are full Wheatstone bridges
- Each pocket has 1 weight & 1 torque sensor
- Values are averages of 3 sensors
- Bending moment and Bending angle


Strain pocket, gages attached to wall


Tension, Torsion & Bending Moment Calibrations

- Honeywell load cells with NIST traceability used for load calibrations
- 124 + calibration stations for 66 scale & bias factors
- Corrections for differential pressure and temperature

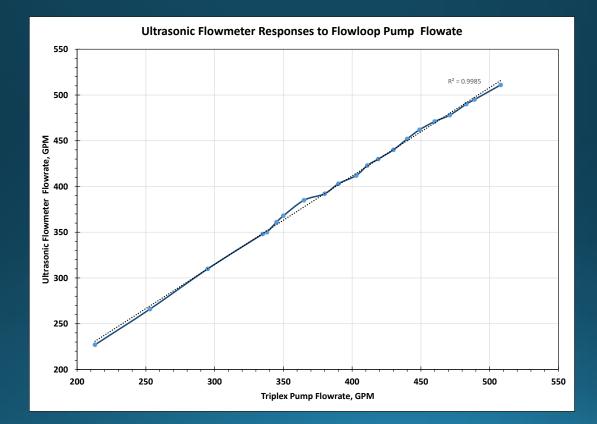
Tension / Compression


Height (Depth) Sensor

- Eye-safe laser rangefinder
- Distance measured by time of flight
- No special target required
 - reflects from any surface
- Factory calibrated
 - 0.8" accuracy at 100', or 0.07% RD
- High sampling rate
 - can provide instantaneous ROP

Pressure & Temperature Sensors

- Digital sensors
- Thin-film strain gages
- Full Wheatstone Bridge
- Factory calibrated
- Full scale 7500 psi
 - 0.025% accuracy
- Nickel RTD temperature
 - Accuracy ≈ 1.0%


Mud Flowrate Sensor

- Flowrate derived from measurement of velocity
- Velocity measured by ultrasonic transit time differences
- Upstream & downstream sensors
- Independent of pressure, temperature & fluid density
- Accuracy ≈ 0.5% of reading

Flowrate sensors with PZT crystals

Ultrasonic Flowmeter Responses

Mud Density Sensor

- Same sensor used for flowrate is used for mud density
- Density is derived from a speed of sound measurement together with a measure of signal attenuation
- Empirical tests are ongoing now
 - Results to date are very encouraging
 - 8.8 to 16.3 ppg WBM
 - Tests at temperature and pressure planned for summer 2016
 - Tests to 850 gpm, WBM & OBM at Houston flow loop in September
 - Accuracy is TBD

Telemetry Channels & Radios

3 data channels:

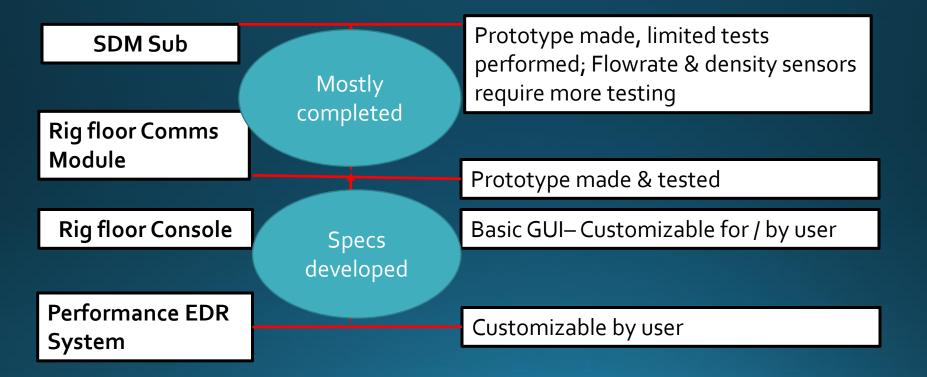
- Uplink Instructions 154.6 MHz
- Principal Downlink Channel 154.6 MHz Radio
 - Data and quality indicators transmitted from sub to rig floor
 - Wrap-around antenna, no "dead" transmission spots
- Secondary / Fast downlink 2.4 GHz Radio Frequency
 - Can be subject to multipath signal interference Uses multiple "patch" antennas
 - Meant for possible transmission of vibration data not processed by onboard digital signal processor

Data Transmissions

- Data telemetered in packets, with redundancy checks, sequence identifications, acknowledgements
- Each sensor data packet contains a quality indicator
- Message frequency configurable, from 1 to 500 Hz
- Data rate of primary radio is 200 kbps; max. throughput is on the order of 1.4 Mb per minute

Data Sampling & Processing

- User creates "Tasking Tables", instruction sets uplinked to sub's Master Controller for :
 - sensors selection
 - sampling rate for each sensor (1 to ≈500 Hz for most sensors)
 - processing for each (type of averaging: mean, mode, RMS, etc)
 - number of samples to average for each (max 256)
 - sampling clock frequency (1 to 500 Hz)
 - radio (transmission) clock frequency (1 to 500 Hz)
- Custom Tasking Tables for different operations
 - e.g., drilling, short trip, well control, other user scenarios.


Example Setup of Sensor Sampling & Update Rates

Measurement	"Typical" Sampling Rate	Value Update Rate
	Hz	sec
Block Height	100	0.1
Hookload, Torque	50	1
Rotary Speed	50	0.25
Mud Pressure	10	1
Mud Temperature	1	60
Flow Rate	100	60
Mud Density	100	60
Vibrations	450	1

Rigfloor Console & Communications Module

- Rig floor Communications Module
 - Contains the antennas for the two radios
 - Contains the two radio circuits
 - Uses Power over Ethernet for comms to Rigfloor Console
- Rig floor Console (Can be integrated into Customer provided EDR system)
 - Receives all data from sub, timestamps, and passes transparently to EDR
 - Displays data for driller
 - Performs minimal processing, algorithms for basic functions (eg, connection identification, calculation of weight on bit)
 - Uploads instructions (Tasking Tables) to topdrive sub

Status of System Components: 4/1/2016

THANK YOU

QUESTIONS & COMMENTS

Instrumented Top Sub