Westside: Unconventional Asset Development Workflow in the Eagle Ford Shale

The Eagle Ford shale is recognized as the largest oil and gas development in the world, based on capital investment (Wood Mackenzie, 2013).  Development typically consists of horizontal wells stimulated with multiple hydraulic fracture stages.  Almost $30 billion was spent developing the play in 2013, and optimizing the completion designs and spacing of these wells can result in large rewards for the companies involved.  This paper presents a pragmatic integrated workflow that was used to optimize the development and to guide critical decisions in the Black Hawk field, Eagle Ford shale.  Geoscientists, reservoir and completion engineers worked collaboratively to identify the optimal completion designs and well spacings for the development’s focus areas.  Multiple simplistic simulation models were history-matched to existing producing wells.  The resulting calibrated reservoir scenarios formed the basis of optimization studies for development drilling and down-spacing. Completion design parameters, including fracture stage length, perforation clusters per stage, and landing point for the laterals, were evaluated in hydraulic fracture models.  The resulting fracture geometries were simulated and the optimum completion design and well spacing determined for each area.  The optimal development was shown to vary by region, due to changing reservoir, fluid and geomechanical properties.  The use of multiple subsurface realizations, spanning an appropriate range of uncertainty, was critical to the success of this study.  Economic analysis across a range of potential outcomes enabled robust development decisions to be made.

Location: Norris Westchase Center
9990 Richmond Ave., Suite 102
Houston , TX 77042

Date: Jan. 21, 2015, 11:30 a.m. - Jan. 21, 2015, 1 p.m.