Pistinguished Lecturer Program

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

What Have We Learned About Fracturing Shales After 12 Years Of Microseismic Mapping?

Shawn Maxwell Schlumberger

Outline

- Unconventionals/microseismic introduction
- Shale fracturing lessons from microseismic
- Geomechanical deformations
- Conclusions

Where Does It All Go?

Barnett Shale Activity

Unconventional Energy Renaissance

■ Horn River

■ Eagle Ford

Utica Shale, U.S.

Anadarko tight oil, U.S.

Permian Tight, U.S.

Hydraulic Fracture Applications

- ✓ Fracture direction
- Height
- Length
- Complexity

- Real-Time Fracture Control
 - ✓ Geo-Hazards
 - Re-fracturing
 - ✓ Stage modification
- Completion Strategy
 - Staging & Isolation
 - ✓ Frac Design
 - Perforation strategy & frac initiation
- Field Development
 - ✓ Well placement
 - ✓ Well spacing
 - Drainage patterns

Improved fracs/production

Project Design for Value

Eagle Ford Example

Petal et al., 2013 URTeC

Project Design for Value

Evolution of Monitoring Geometries

How do accuracies and sensitivities compare?
How do you decide which option?

SPE159670

Acquisition Footprint

Shale Lessons: Containment

1. Depth Containment

13

Environmental Concerns

Aquifer Protection

Fracture Height Growth

Induced Seismicity

No damage and rare (5 cases from 3,000,000 fracs)₁₇

Shale Lessons: Heterogeneity

- 1. Depth Containment
- 2. Fracture Variability

Geomechanical "Sweetspots"

Improved well placement using integrated reservoir characterization and microseismic

Shale Lessons: Complexity

- 1. Depth Containment
- 2. Fracture Variability
- 3. Fracture Complexity

Shale Lessons: Reservoir Contact

- 1. Depth Containment
- 2. Fracture Variability
- 3. Fracture Complexity
- 4. Stimulated Reservoir Volume

Stimulated Reservoir Volume

Microseismic Vol> Stress Vol> Hydraulic Vol> Propped Vol **Location Uncertainty**

22

Geomechanics

Microseismic Calibration

SPE152165

Partitioning Deformation

Shear

Calibrate fracture density

SPE 166312

Tensile

Estimating Proppant Distribution

SPE152165

- Estimate propped component from mass balance
- Majority of the hydraulically activated network not propped

Reservoir Simulation

Production Forecast 20 Years

Reservoir Drainage

Optimized Fracturing
More stages smaller
proppant, more proppant

Conclusions

Evolving geomechanical interpretation tools key to realize the full value from microseismic

- Microseismic demonstrated complex fracture networks
- Microseismic volume oversimplification
- Microseismic calibration of complex geomechanical fracture model
 - > Enables reservoir simulation of well performance
 - > Estimates effective propped network

Questions?

