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Unconventionals/microseismic introduction
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Where Does It All Go?

Fracture Complexity & Natural Fractures
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Barnett Shale Activity
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Unconventional Energy Renaissance

Step on the gas
US electricity generation mix, %

B Coal I (il B Gas
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Hydraullc Fracture Applications

* Real-Time Fracture Control
v' Geo-Hazards
v Re-fracturing
v Stage modification

* Completion Strategy
v Staging & Isolation

v Frac Design
v Perforation strategy & frac
Initiation
* Field Development
v" Well placement

v Fracture direction ‘; Well spacing
v Height Drainage patterns
v Length

v Complexity Improved fracs/productig)n



Project Design for Value

Eng Obj
Landing Point

Cross section Cross section




Petal et al., 2013
Eagle Ford Example 222

Well B Shallow_|_
Position

Well C Vertical
Array Position

Well D (Used to—"2
Monitor Well B)

Production Log and Microseismic Event Count Comparison

m % of Gas per Stage from Production Log

mMicroseismic Event Count

EventCount

Stage #
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Stage Number




Project Design for Value

Stages3-9
Av. Rate: 80-120 bpm

Austin Chalk

Upper Eagle Ford

Lower Eagle Ford

Buda Lime




Evolution of Monitoring Geometries

Noise  Signal

How do accuracies and sensitivities compare?
How do you decide which option?

SPE159670
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Acquisition Footprint

Downhole Array Shallow Grid




Shale Lessons: Containment

1. Depth Containment

|
Well Treatment Well
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Environmental Concerns

WERE GOING TO
START FRACKING
UNDER OUR BIGGEST
COMPETLITOR™S
HEADQUARTERS.
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Aquifer Protection

Gas emissions
Clean water to atmosphere Production Storage tanks or

- ”‘ Platform Lagoon .
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Induced Seismicity

Activity

@ OilGas Extraction

@ Secondary Recovery
Waste Water Injection
Reservoir Induced

0 Geothermal

Hydraulic Fracturing (Shale Gas)

> oner O US National Academy, 2012

No damage and rare (5 cases from 3,000,000 fracs)




Shale Lessons: Heterogeneity

1. Depth Containment
2. Fracture Variability

SPE144207
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-

Geomechanical “Sweetspots”

Improved well placement using integrated reservoir
characterization and microseismic

19



Shale Lessons: Complexity

1. Depth Containment
2. Fracture Variability
3. Fracture Complexity

SPE77440

* Low stress anisotropy = High stress anisotropy
* Wide fracture fairway = Narrow fracture fairway
= Lower seismic anisotropy - Higher seismic anisotropy

Sayers 2010 20



Shale Lessons: Reservoir Contact

1. Depth Containment

2. Fracture Variability

3. Fracture Complexity

4. Stimulated Reservoir Volume
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Microseismic Vol> Hydraulic Vol> Propped Vol

Location Uncertainty
SPE146932 22



Geomechanics
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Microseismic Calibration
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Estimating Proppant Distribution

Proppant_areal_Distribution |§

SPE152165

Estimate propped
component from mass
balance
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Reservoir Simulation
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Reservoir Drainage

Optimized Fracturing
More stages smaller
proppant, more proppant

+
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Conclusions

Evolving geomechanical interpretation tools
key to realize the full value from microseismic

« Microseismic demonstrated complex fracture networks
* Microseismic volume oversimplification

« Microseismic calibration of complex geomechanical fracture
model

» Enables reservoir simulation of well performance
» Estimates effective propped network

AS
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