

A Decade Monitoring Shale Gas Plays Using Microseismicity: Advances in the Understanding of Hydraulic Fracturing

11-Mar-14 Sheri Bowman

Introduction

- Early assumptions:
 - Rock is a homogeneous mass with no pre-existing structure
 - Hydraulic stimulation nucleates fractures which propagate through the rock
 - Fractures grow asymmetrically about the treatment zone
 - Fractures are vertical to sub-vertical
- Introduction of microseismic monitoring in ~2000 challenged a number of these assumptions
 - Fractures do not always grow symmetrically
 - Changes in treatment programs and completion styles can affect fracture growth
 - Not all fractures are vertical
 - Pre-existing structures such as natural fractures exist in many geological formations.
- We review the evolution of microseismic monitoring as it has been applied to hydraulic fracturing and how it has helped shape the current understanding of reservoirs and fracing.

Early Days of Monitoring

Single, vertical, offset observation arrays

- Microseismics can identify stage dimensions only -Length, Height, Orientation
 - Draw a box/envelope around events to determine stimulated volume

- More events = more production
- Real-time geo-hazard avoidance

Fracture Variability, Barnett Shale, 2000

Role of Structure in Production

Real Time Geo-Hazard Avoidance

- Prevention of fracing into aquifers
- Identification of casing failures

Moving From Vertical to Horizontal Treatment Wells - Detectability

Fracture Dimensions and Detection Biases

How to calculate fracture dimensions?

- 100% of events? 90%
- Envelop around events?
- Does every event contribute equally?

Stimulated Reservoir Volume

Large Seismic Deformation

Estimated Stimulated Reservoir Volume based on seismic deformation (SRV_D) aims to describe effective stimulation volume taking into account information available in the microseismic data.

- Seismic Deformation in a volume is calculated based on the moment of the seismic events within that volume.
- Volumes that have small seismic deformation will not be extensively fractured.
- Areas of higher seismic deformation show increased fracture density and permeability and therefore, are expected to contribute more effectively to reservoir production.
- Large seismic deformation will either have a complex network of many small fractures, a number of large fractures, or both.

Using Source Parameters to Assess Treatment

Plan

Stage A

Stage A	Stage B
2416	1700
371	326
70/140, 40/70	70/140, 40/70, 40/80
150	175
3331	1374
	2416 371 70/140, 40/70 150

Using More Than One Array

- Adding multiple arrays reduces detection bias
- Provides wider coverage of treatment wells
- Improves location accuracy

Whip-Array™

Provides opportunity for more advanced analysis

Observation Well

Microseismic **Events**

Vertical Array

Benefit of Multiple Observation Arrays

- All 52 events are
 - Individually locatable on all arrays (P- and Swaves detected on all arrays)

Dual-Array esg Event Locations

- Illustrate slightly more scatter
- Some array configurations show offset

Single-Array Event Locations Event Locations

- Reveal increase scatter
- Larger error ellipsoids
- Loss of northeastsouthwest azimuth in array2 event solutions
- One array solutions rely more on azimuth

Challenges to Old Ideas

- How do fractures initiate and propagate?
- Are new fractures being created or are old fractures being activated?
- What is the role of pre-existing fractures and bedding planes?
- Are these fractures open or cemented prior to stimulation?
- Are some fracture sets preferentially activated during hydraulic stimulation?
- What is the interaction of fractures of different orientations?

Bridging the Gap Using Microseismicity

Microseismic waveforms include information about the source of the failure and the rock conditions leading to failure.

SMTI/DFN

- Modes of failure have three end-members:
 - isotropic
 - double-couple (DC) / shear
 - compensated linear vector dipole (CLVD)

- Common modes of failure:
 - Tensile opening of a fracture (normal to tension axis)
 - Closure of a fracture (normal to pressure axis)
 - Slip on a fracture surface (DC) resolvable solutions
 - Relative dimensions based on modified Brune Model (shear-tensional)

explosion k = 1.0

crack opening

crack closing

DC / shear

Source Types

Effect of Overlapping Stages

Building on SMTIDiscrete Fracture Network (DFN)

Fracture orientations and extents are dimensions shown as discs, coloured by source type.

DFN: Marcellus - Role of Pre-existing Fractures in Shale

Stress concentration from faults results in different fracture sets activated on either side of the pad.

DFN Activation in the Marcellus Shale

Engelder et al. (2009)

DFN Case Study #2

Event Locations

Fracture Planes

Stimulation Response: Fractures

Stimulation Response: Failure Types

Fracture Re-orientation

Well 2, Stage C

Pressure

Well 2, Stage E

Hesitation Frac: Well 2, Stage C

Pre Shut-In

Post Shut-In

Enhanced Fluid Flow - EFF

Single Fracture

- Opening aperture is calculated based on the strain from the moment tensor factoring in the source dimensions.
- Average individual fracture openings over a neighbourhood (nearest neighbour statistical approach) of fractures with similar orientation

Building Fracture Complexity, EFF

Where Do We Go Next?

- Are we seeing the whole picture?
- Seismic vs. aseismic and the age old balance of energy question?
- Can we go into deeper and hotter wells?

New Tools, New Understandings

- Operators are in need of more robust monitoring solutions
 - High temperature tools
 - Deeper, higher temperature reservoirs are the "hot" plays
 - Longer lasting tools
 - Stimulations are moving away from single well pads to multi-well, zipper-fracing pads.
 - Integration is key
- Combination of downhole sensors with lower frequency geophones on the surface
 - Treatments are producing events with moment magnitudes > 0
 - Traditional downhole geophones mis-calculate the actual size of larger events.

Hybrid Solutions:

Combining Surface + Downhole + lower Freq. Geophoneses

Correct Event Radius based on ISM network (ft)	Event Fault Radius based on saturated downhole data (ft)
99	12
101	11
77	14
87	15
93	26
82	19
82	15

Conclusions

- For the last decade or so, microseismic monitoring has been used to enhance the understanding of hydraulic fracturing.
 - Early observations identified the importance of structure within shale plays, movement away from simple biwing fracture models
 - Avoidance of geo-hazards in real time
- Extensive array coverage and advances in understanding of event signals has recently allowed for:
 - The identification of opening vs. closing fractures
 - assessment of the role natural fractures play in stimulations
 - targeted injection programs
 - Determination of refined estimates of enhanced fluid flow (SRV, SSA)
- Moving the microseismic industry forward
 - Gaining accurate source parameters through hybrid monitoring configurations
 - linkage provided through microseismic calculation of FC and FI, and power law behavior of fractures to reservoir models
 - Improvements to geophones allowing for monitoring of hotter reservoirs
- Putting all the pieces together to build more accurate reservoir models