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Introduction C
esg
e Early assumptions:
— Rock is a homogeneous mass with no pre-existing structure
— Hydraulic stimulation nucleates fractures which propagate through the rock
— Fractures grow asymmetrically about the treatment zone

— Fractures are vertical to sub-vertical

* Introduction of microseismic monitoring in ~2000 challenged a number of
these assumptions

— Fractures do not always grow symmetrically

— Changes in treatment programs and completion styles can affect fracture
growth

— Not all fractures are vertical

— Pre-existing structures such as natural fractures exist in many geological
formations.
* We review the evolution of microseismic monitoring as it has been applied
to hydraulic fracturing and how it has helped shape the current
understanding of reservoirs and fracing.




Early Days of Monitoring
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* Single, vertical, offset observation arrays

* Microseismics can identify stage dimensions only -
Length, Height, Orientation

— Draw a box/envelope around events to determine
stimulated volume

* More events = more production

* Real-time geo-hazard avoidance




Fracture Variability, Barnett Shale, 2000
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Role of Structure in Production

Complex Fracture Network
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Symmetric Fracture
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Real Time Geo-Hazard Avoidance
esg

* Prevention of fracing into < -
aquifers W
* Identification of casing . P

failures




Moment Magnitude

Moving From Vertical to Horizontal Treatmeng
Wells - Detectability
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Fracture Dimensions and Detection Biases
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Stimulated Reservoir Volume
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Estimated Stimulated Reservoir Volume based on
seismic deformation (SRV) aims to describe effective
stimulation volume taking into account information
available in the microseismic data.

— Seismic Deformation in a volume is calculated based
on the moment of the seismic events within that
volume.

— Volumes that have small seismic deformation will
not be extensively fractured.

— Areas of higher seismic deformation show increased
fracture density and permeability and therefore, are
expected to contribute more effectively to reservoir
production.

— Large seismic deformation will either have a complex
network of many small fractures, a number of large
fractures, or both.




Using Source Parameters to Assess Treatmen}re
, N\

Plan

Stage A— |

Vi Facre D gty

esg

Elapsed Time (Beginning of Stage)

N e
"
, "‘“"@m
Number of Events: 2416 1700
Fracture Length (m): 371 326
Type of Sand Used: 70/140, 40/70 | 70/140, 40/70, 40/80
Max Prop Conc. (kg/m3); 150 175
Crosslink (m3) 3331 1374
1.6e+10 —
1.4e+10
40/70 prop begin%
. 1.26+10 - (Stage B)
£
% 1.0e+10
c
[0
E 80e+9 |
=
©
£ 6.0e+9 - ]
3 40/70 prop begins
wn
4.0e+9 (Stage A)
20e+9 A
0.0 v T T T T T T T T T T
00:00:00 04:00:00 dszoo:oo 12:00:00

i Frchre el Ty




Using More Than One Array

Adding multiple arrays
reduces detection bias Surface Arrays
Provides wider coverage of
treatment wells

Improves location accuracy
Provides opportunity for
more advanced analysis

Vertical Array

- |Observation Well Treatment Well |

Whip-Array™

Microseismic
Events

Multiple Vertical or 1+
Horizontal arravs ol



Benefit of Multiple Observation Arrays ©
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rray Locations
Asymmetry
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Error Ellipsoids
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Event Locations
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Challenges to Old Ideas
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*  How do fractures initiate and propagate?

* Are new fractures being created or are old fractures being activated?

* What is the role of pre-existing fractures and bedding planes?

* Are these fractures open or cemented prior to stimulation?

* Are some fracture sets preferentially activated during hydraulic stimulation?

*  What s the interaction of fractures of different orientations?




Bridging the Gap Using Microseismicity O
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SMTI/DFN

* Modes of failure have three end-members: esg
— isotropic

— double-couple (DC) / shear
— compensated linear vector dipole (CLVD)

e Common modes of failure:

— Tensile opening of a fracture (normal to tension axis)

— Closure of a fracture (normal to pressure axis) explosion k = 1.0

— Slip on a fracture surface (DC) — resolvable solutions

— Relative dimensions based on modified Brune Model

(shear-tensional) .
+dipole,

crack opening crack closing DC /shear
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Effect of Overlapping Stages

stage 15: 579 events stage 16: 327 events stage 17: 185 events




Bui|aing on SMTI o

Discrete Fracture Network (DFN) esg

Microseismic Events Moment Tensors Discrete Fracture
(dots) ) 9

(beachballs) Networks

(penny-shaped cracks)

Fault Planes: Crack Opening
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Fracture orientations and extents are dimensions shown as discs, coloured by
source type.




DFN: Marcellus - Role of Pre-existing

Fractures in Shale esg
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Stress concentration from faults results in different
fracture sets activated on either side of the pad. 21




DFN Activation in the Marcellus Shale O
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DFN Case Study #2 ®
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Stimulation Response: Fractures
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Hesitation Fracture /

implosion k = -1.0




Fracture Re-orientation

Well 2, Stage C esg
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Hesitation Frac: Well 2, Stage C
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Enhanced Fluid Flow - EFF (O
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Single Fracture Fracture System

* Opening aperture is calculated based on
the strain from the moment tensor
factoring in the source dimensions.

e Average individual fracture openings
over a neighbourhood (nearest
neighbour statistical approach) of
fractures with similar orientation
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Where Do We Go Next?

esg

* Are we seeing the whole picture?

e Seismic vs. aseismic and the age old balance of
energy question?

 Can we go into deeper and hotter wells?

30




New Tools, New Understandings o
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* QOperators are in need of more robust monitoring solutions

— High temperature tools
* Deeper, higher temperature reservoirs are the “hot” plays

— Longer lasting tools

e Stimulations are moving away from single well pads to multi-well, zipper-
fracing pads.

— Integration is key

 Combination of downhole sensors with lower frequency
geophones on the surface

— Treatments are producing events with moment magnitudes > 0

— Traditional downhole geophones mis-calculate the actual size of
larger events.

31




Hybrid Solutions: @
Combining Surface + Downhole + lower Freq. Geophone<$Sg
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Conclusions ©
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* For the last decade or so, microseismic monitoring has been used to enhance the
understanding of hydraulic fracturing.

— Early observations identified the importance of structure within shale plays, movement away from simple bi-
wing fracture models

— Avoidance of geo-hazards in real time

* Extensive array coverage and advances in understanding of event signals has recently
allowed for:
— The identification of opening vs. closing fractures
— assessment of the role natural fractures play in stimulations
— targeted injection programs
— Determination of refined estimates of enhanced fluid flow (SRV, SSA)
* Moving the microseismic industry forward

— Gaining accurate source parameters through hybrid monitoring configurations

— linkage provided through microseismic calculation of FC and FI, and power law behavior of fractures to
reservoir models

— Improvements to geophones allowing for monitoring of hotter reservoirs

e Putting all the pieces together to build more accurate reservoir models




