2016 Deepwater Drilling and Completions Conference

14-15 September 2016
MOODY GARDENS
CONVENTION CENTER
Galveston, Texas, USA

Outline

- Introduction
- Challenges
 - Drilling through salt
 - Drilling dynamics with PDC bits
 - Bit reamer synchronization
 - Offset drilling performance
- Hybrid Bit
- Results
 - Salt
 - Sub-salt
- Conclusion
- Acknowledgement & Questions

2016 Deepwater Drilling and Completions Conference

Introduction

- Location
 - Walker Ridge
 - Keathley Canyon
 - Garden Banks
- Water Depth
 - > 4,000ft
- Well Profile & Target
 - Vertical & "J" Profile
 - DLS $< 1.5^{\circ} / 100 \text{ft}$
- Lithology
 - Salt: Mostly Halite-Some Sylvite
 - Sub-salt: Shale, Sandstone, Marl,
 Siltstone & Limestone Stringers

2016 Deepwater Drilling and Completions Conference

Drilling Challenges

- Drilling Through Salt
 - Creep
 - Rubble zone
- Drilling Dynamics
 - Torque fluctuation
 - Stick-slip & lateral vibration
- Bit and Reamer Synchronization
- Offset Drilling Performance
- Directional Control with RSS BHA

2016 Deepwater Drilling and Completions Conference

Drivers for Engineered Bit Solution

- Enhance the drilling performance in salt and subsalt formations.
- Mitigate torque fluctuation while drilling through salt and interbedded sub-salt formations.
- Increase drilling efficiency.
- Enhance bit / BHA reliability and run length.
- Provide good directional control with the rotary steerable tool.

2016 Deepwater Drilling and Completions Conference

Hybrid Bit

- **Dual Cutting Mechanics**
 - **Crushing & Gouging**
 - Shearing
- Roller-cone Elements
 - Pre-stresses the rock
 - Provides depth of cut control
 - Mitigates torque fluctuation
- **PDC Cutting Elements**
 - Aggressiveness
- Hydraulics
 - Jets closer to hole bottom
- Catastrophic Loss

and Completions Conference

- Addressed by design

Results - Salt

2016 Deepwater Drilling
and Completions Conference

Run No.	Torque (ft-lb)	
	Mean	Standard Dev.
Run 1- PDC	29,788.6	3,989.5
Run 2 - HYB	31,453.3	3,843.9
Run 3 - PDC	38,260.9	10,915.0
Run 4 - PDC	30,952.8	5,484.8

Torque

- Torque generated with hybrid bit was lower when compared to PDC bit bits.

- Penetration Rate
- First hybrid run achieved 102.0 ft/hr with conservative parameters.
- Subsequent runs achieved 124.5, 156.6, 193.4 ft/hr.

Results - Salt

Drilling Efficiency

- Comparison of mechanical specific energy (MSE) for each bit run Hybrid bit shows higher drilling efficiency compared to PDC runs.
- For a given MSE input, lower value more mechanically efficient drillings.

2016 Deepwater Drilling and Completions Conference

Results - Sub-salt

- Seven wells were studied
- Average ROP were reviewed
- Hybrid runs displayed better ROP
- Hybrid bits completed the section
 - Well #6 pulled for top drive issues
 - Well #7 pulled to pickup RSS

2016 Deepwater Drilling and Completions Conference

Results - Sub-salt

- **Drilling Dynamics**
- Hybrid bits displayed lower vibration levels while drilling Pliocene sandstone.
- Hybrid bit drilled the similar formation with lower vibration.

PDC

2016 Deepwater Drilling and Completions Conference

Results - Sub-salt

- Drilling Dynamics
- Significant abrasive wear on PDC bits.
- Impact damage was also noted.
- Hybrid bit cutting structures were preserved.

2016 Deepwater Drilling and Completions Conference

Conclusion

- Hybrid bits can drill salt and sub-salt formation at faster penetration rates compared to PDC bits.
- Drilling efficiency of the hybrid drill bits are significantly higher compared to PDC bits in salt.
- Compared to a PDC bits, hybrid bits display better stability in salt and sub-salt formations.
- Hybrid bits display lower torque fluctuation compared to PDC bits.
- The hybrid bits proved to be more durable in the hard clastic formations of the sub-salt interval.

2016 Deepwater Drilling and Completions Conference

2016 Deepwater Drilling and Completions Conference

14-15 September 2016

MOODY GARDENS

CONVENTION CENTER

Galveston, Texas, USA

Acknowledgements / Thank You / Questions

- Authors want to thank management of Chevron U.S.A. Inc. and Baker Hughes for supporting the publication
- Thanks to technical publication team for manuscript review and editorial insight.

