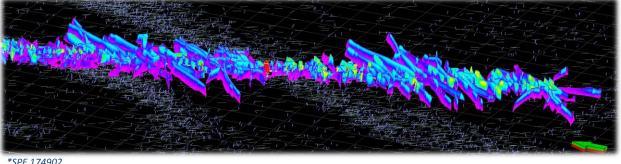

An Integrated Approach to Candidate Selection for Refracturing Success

Jason Baihly – Commercial & Risk Assessment Manager Schlumberger

Overview


- Why Refracture
- Selection Methodologies
 - Horizontal Focus
 - Open vs. Specific Candidates
- Candidate Vetting
- Candidate Diagnosis
 - Possible Treatment Types
- Example
- Summary

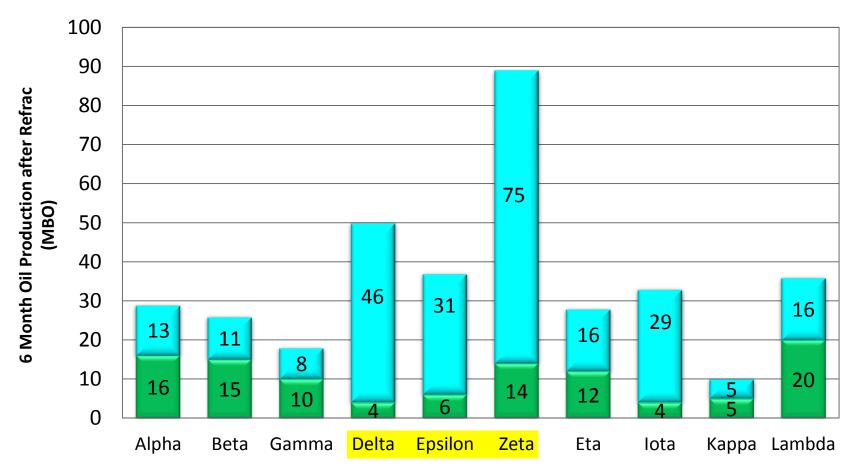
Why Refracture

- Capital efficiency
 - Contact more hydrocarbons without drilling a new well
- Greater economic return than a new well
 - Less capital exposure
- Add reserves or accelerate reserves
- Extend retention of a lease
- Secondary recovery mechanism/EOR
- Reservoir pressure and stress maintenance
 - Infill wells not achieving the same EUR as Parents
 - Parent wells lose EUR when frac'd into from infill wells

Candidate Selection

Approaches to Refracturing Candidate Selection

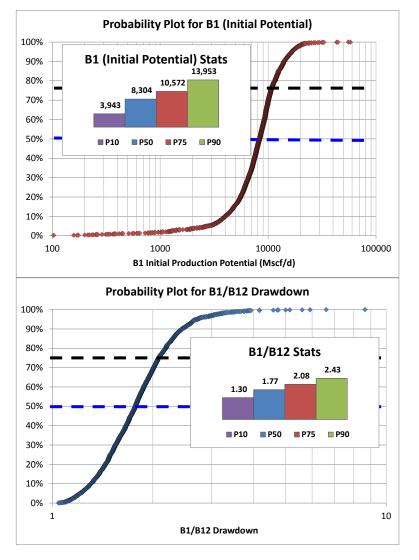
- Open well(s) [Any wells]
 - High level (Candidate
 Selection) → Well level
 approach (Candidate Vetting)
- Focused well(s) [Specific wells]
 - Well level approach (Candidate Vetting)
- Some one dimensional methodologies
 - Geologically focused
 - Completion/stimulation focused
 - Production focused
 - Reservoir focused
 - Emotional
 - Financial
- Multidimensional/integrated

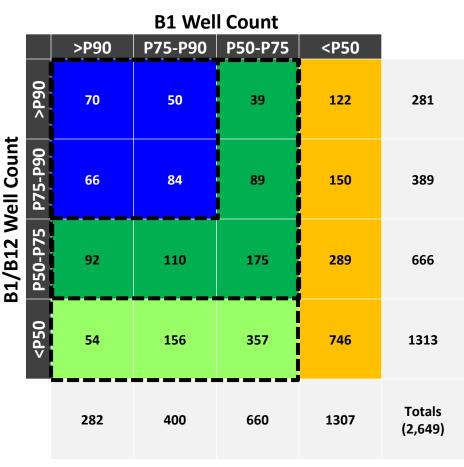


Where to Begin

• Lots of wells, lots of data; how to make sense of it all

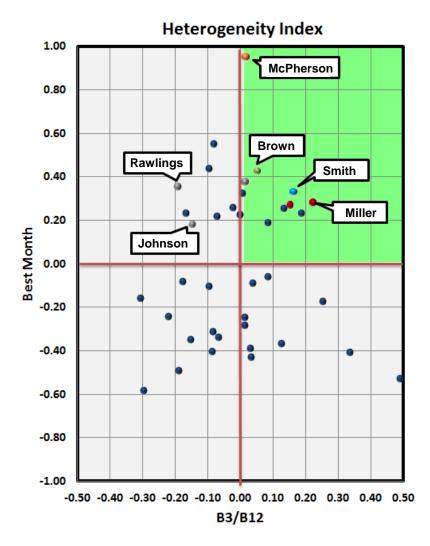
Multivariate 6 Month Production Uplift



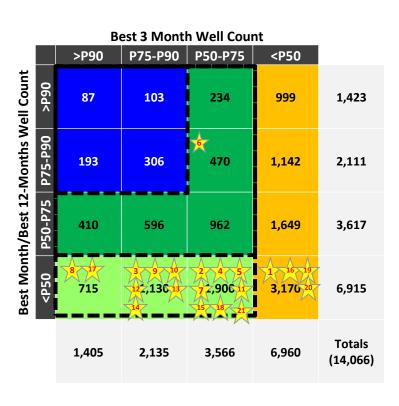

Production gain is actual 6 month production added to the 6 month no refrac baseline

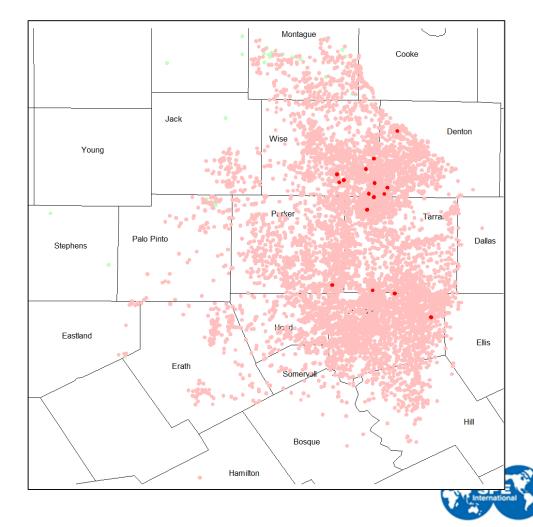
6 Month Base Production 6 Month Incremental Refrac Production

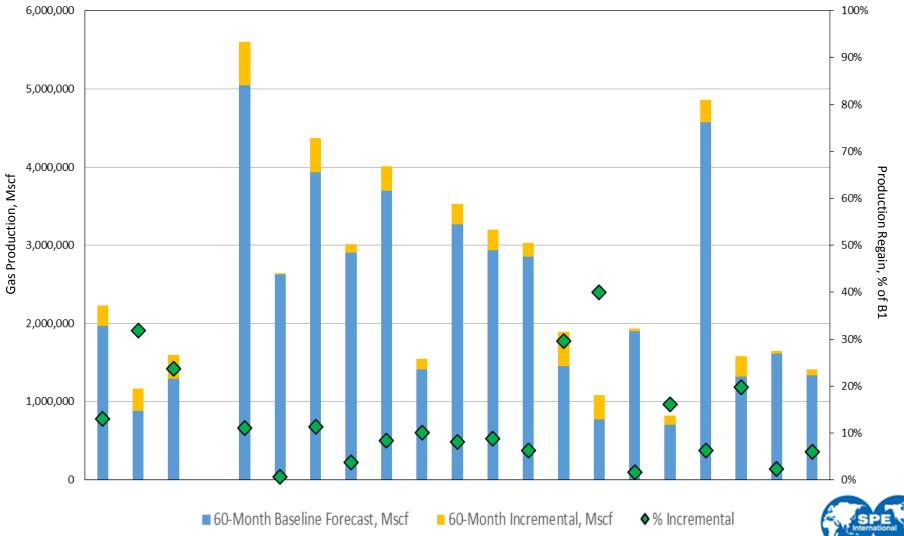
Matrix Approach for Haynesville



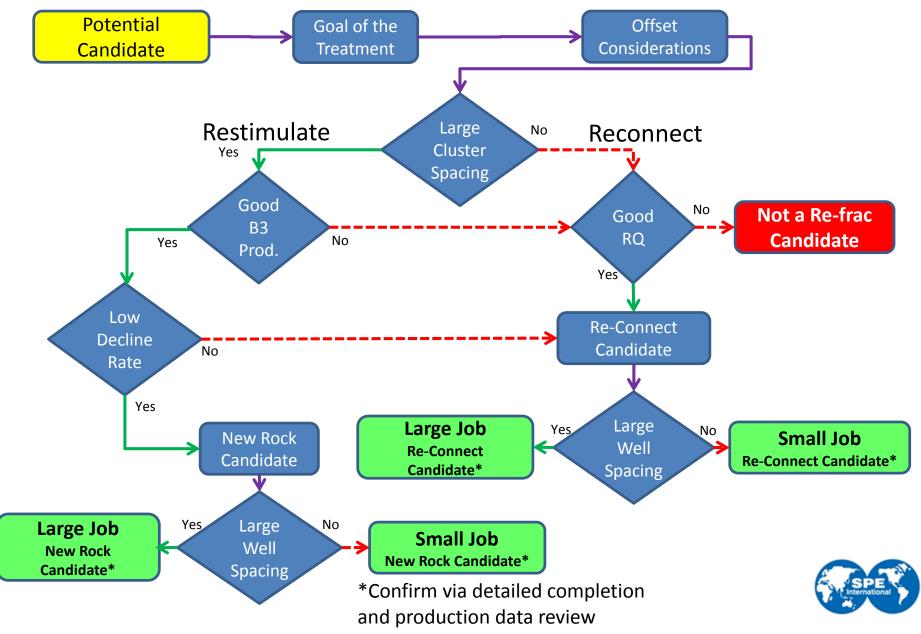
270 wells with P75 or better on both indicators 775 wells with P50 or better on both indicators 1,342 wells with >P50 B1 Gas




Matrix Approach Alternative Visualization

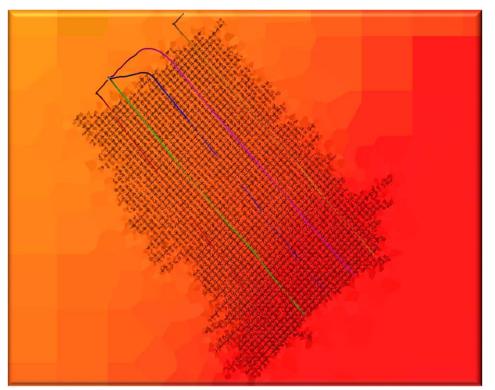


Identified Barnett Horizontal Refracs H2 2013-H1 2015



Identified Barnett Horizontal Refracs H2 2013-H1 2015

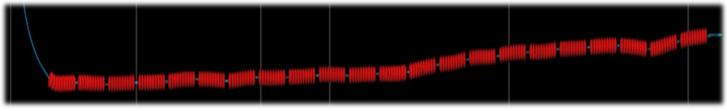
Workflow Approach



Candidate Vetting

Reservoir Considerations

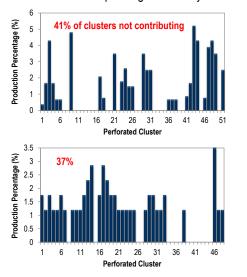
- Offset well
 - Spacing
 - Interference/depletion
 - Sequencing
 - Pad vs. single well
- Pressure depletion along lateral
 - Degree, location, and extent
 - Previous fractures
 - Landing zone
- Bypassed pay along lateral
 - Function of
 - Landing
 - Perforation scheme
- GOR
- % of potential EUR* already produced/remaining

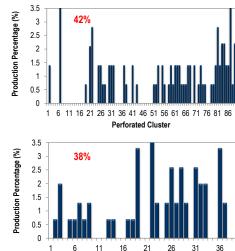


*URTeC: 2172668

Well Construction Considerations

- Lateral length and depth
 - Can the entire lateral be effectively stimulated
- Well trajectory
 - Stress variability
 - Lithology variability
 - Sumps
- Treating pressure limitations
 - Wellhead
 - Casing integrity
 - Ballooning/sudden pressure changes
- Frac isolation effectiveness
 - OH vs CH considerations
 - Packers/poor cement
 - Over-flushed balls

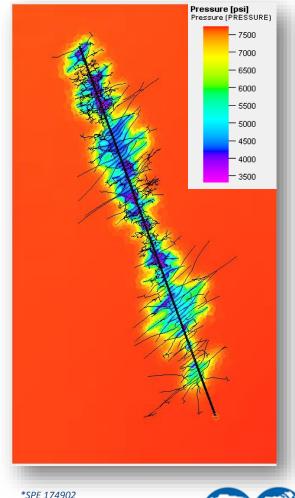



Completion Considerations

- Stages
 - Number
 - Spacing
- Perforations
 - Too few
 - Too many
 - Contribution
- Initial fracturing treatment
 - Amount of fluid
 - Type of fluid
 - Proppant amount
 - Size of proppant
 - Rate

• 250+ production logs evaluated in North America

All well were completed geometrically



Perforated Cluster

*SPE 144326

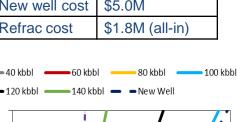
Other Considerations

- Damage mechanisms
 - Drilling damage mud losses
 - High drawdown Migrating clays/Prop embedment
 - Scale damage paraffins or asphaltenes
 - Future focus of refracturing
- Operational constraints
 - Seasonal issues winter vs. summer ops
 - Pad resizing
 - Partners
- Rate limitation
 - Pump faster than depleted zones can drink
- Age of the well
- Current production rate

Reservoir Causes for Refrac Failures

- Poor reservoir quality (RQ)
- Landing the well in an undesirable zone
- High depletion
- Little recoverable hydrocarbon remaining

Economic Considerations


Eagle Ford

Royalty	25%
New well cost	\$5.5M
Refrac cost	\$1.6M (all-in)

Bakken

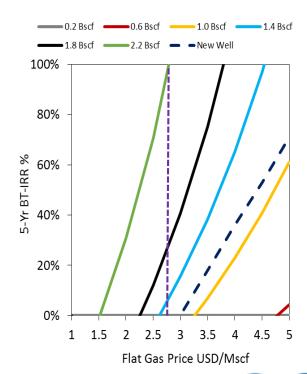
Royalty	20%
New well cost	\$5.0M
Refrac cost	\$1.8M (all-in)

40 kbbl 60 kbbl 80 kbbl 100 kbbl 40 kbbl 🗕 120 kbbl 🛛 — 140 kbbl 📥 🖕 New Well 100% 100% 80% 80% 5-Yr BT-IRR % 60% 60% 40% 40% 20% 20% 0% 0% 30 50 60 70 30 40 80 Flat Oil Price USD/bbl

50

Flat Oil Price USD/bbl

40

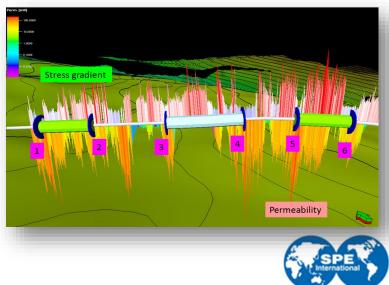

60

70

80

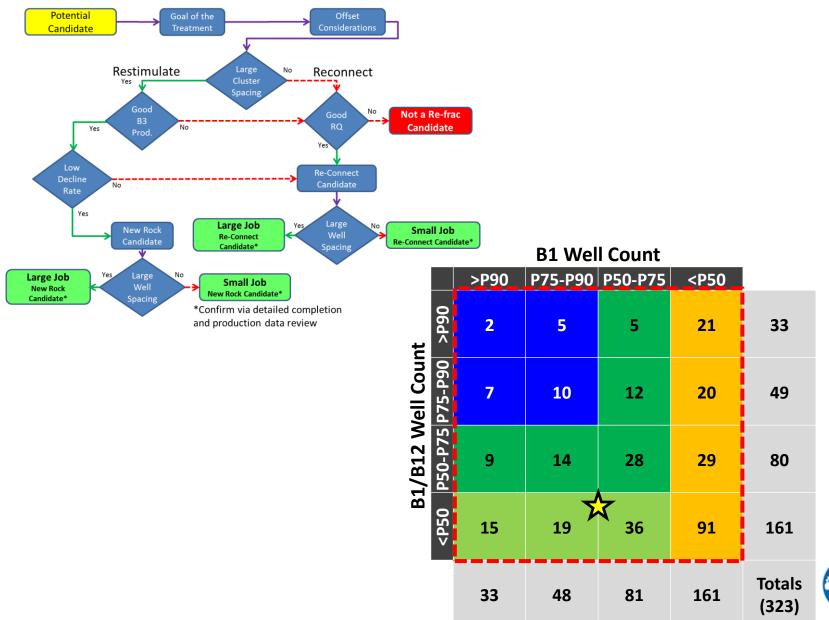
Haynesville

Royalty	25%
New well cost	\$6.5M
Refrac cost	\$1.7M (all-in)



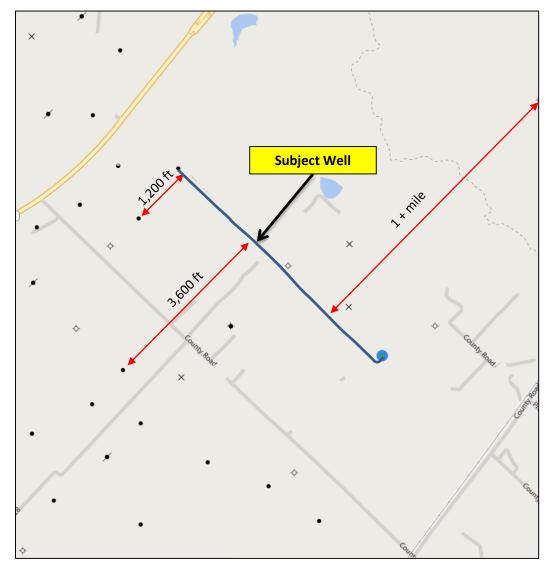
5-Yr BT-IRR %

Diagnose the Candidate


- Why should the candidate well be refractured?
- What are the ailments causing the well to need a refracturing treatment
 - Make sure the refrac treatment addresses the ailments/need
- What is the goal of the treatment
- Basic considerations
 - Fair to good reservoir quality
 - Sufficient reservoir pressure
 - Remaining recoverable reserves
 - Under-stimulated wells
 - Economics

Candidate Selection Case Study

Example Candidate Recognition Process



Example Well Spacing Analysis

SE Texas

Nearest horizontal offset well is 1+ mile away

Goal is to test viability of refracs to determine if incremental production is economically viable

Potential

Candidate

Goal of the

Treatment

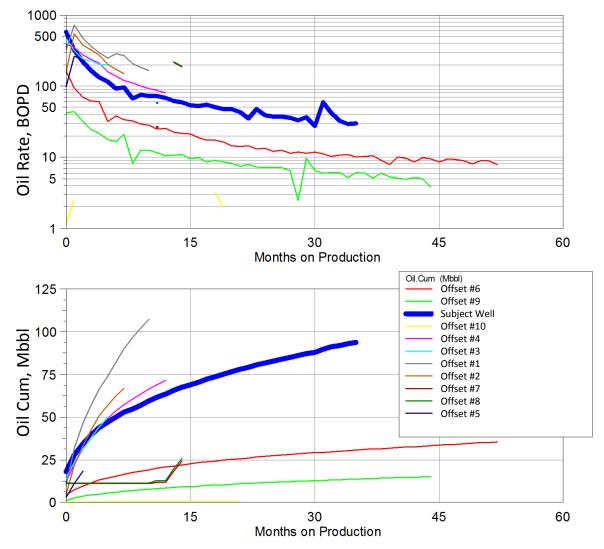
Offset

Example Well EB Completion

Restimulate

Large

Cluster


No

Reconnect

- ~5K ft lateral length
- 20 stages; 5 clusters/stage; 50 ft cluster spacing
- 250 ft stage interval (plug to plug)
- 738 total perforations
- Total fluid ~4.5 MMgal
- Total proppant ~ 5.1 MMlbs

Offset Production Analysis

- Nearest horizontal offset well ~1+ mile away
- B3 oil production from Operator:
 - 373 BOPD

Good

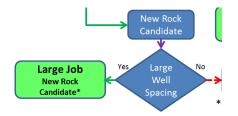
Prod.

No

- Production welltest IP from IHS:
 - 533 BOPD on 14/64" choke size
- Last Analyzed Production Rate: 60 BOPD, 21 MSCFD on 06/09/2015

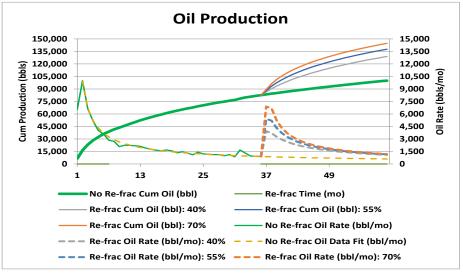
Good

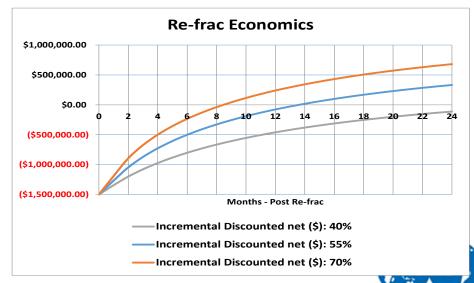
Completion & Production Quality


Low Decline Rate

- Completion/frac data for offset wells from Navport
- Subject Well has good B3 oil normalized by lateral length (0.07 BOPD/ft), and decent proppant vol/ft (1,018 lb/ft) compared to offsets

Well Name	Operator	Date of First Production	B3 Oil (BOPD)	Lateral Length, ft	B3 Oil Normalized by Lateral Length (BOPD/ft)	of		Total Proppant (Mlb)	Pron/St	Average Prop Vol/ft (Ib/ft)
Offset 1	A		519	5 <i>,</i> 909	0.09	15	4,741	5,242	350	887
Example Well	A		373	4,995	0.07	20	4,445	5 <i>,</i> 085	254	1,018
Offset 2	А		415	6,300	0.07	20	4,760	4,928	246	782
Offset 3	А		338	6 <i>,</i> 056	0.06	18	4,824	5,182	288	856
Offset 4	В		342	6,987	0.05	30	7,009	11,268	376	1,613
Offset 5	В		198	8,115	0.02	30	8,175	12,014	400	1,480
Offset 6	А		108	4,766	0.02	5	1,552	686	137	144
Offset 7	В		138	6,383	0.02	16	6,004	9,160	573	1,435
Offset 8	В		134	6,317	0.02	17	5,837	9,162	539	1,450
Offset 9	Α		39	5,023	0.01	2	1,502	327	164	65
Offset 10	C		2	2,915	0.00	2	485	600	300	656




Economics

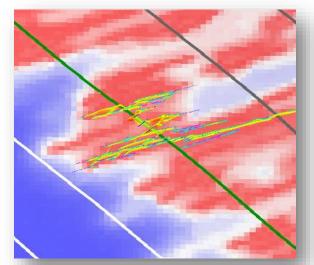
Assumptions:

- All-in cost of refrac job is \$1.5MM
- Fixed Oil Price \$60/bbl : Fixed Gas Price \$2.9/Mscf
- Royalties ~10%
- Decline after refrac is considered to be the same as the early decline for the first 2 years

Sensitivity for payout in 12 months:

Investment (\$)	Production Regain (% of Max Month)
1,800,000	80%
1,500,000	60%
1,200,000	45%

Candidate Selection Process Conclusions and Recommendations


Conclusions:

- Good B3 oil production for candidate well (373 BOPD) (+)
- Well was down to ~35 BOPD when shut in for refrac (+)
- Good initial oil production rate for candidate well (IP 533 BOPD on 14/64" chokes) (+)
- Reservoir and Completion Quality
 - Candidate well lateral is ~5K ft with 5.1 MMlbs of proppant (1,018 lbs/ft higher end for the area, low for the basin) (0)
 - Cluster spacing is tight (-)
 - >80% of the lateral was landed in the target zone (+)
 - Good reservoir quality for sub-basin (+)
 - Nearest EFS horizontal offset well spacing ~1+ mile away (+)
- 55% uplift needed to payout in ~12 months @ estimated completion cost (+)
 Recommendations:
- Lots of positives, go ahead with a 22 stage 4MMlb refrac treatment with chemical diversion
 - Actual costs lower than the preliminary models

Candidate Selection Summary

- Be open to looking at all wells as possible candidates
- Perform a multidisciplinary integrated analysis
- Diagnose the patient
 - Identifying underperforming wells
 - Understanding the reason for poor performance
- Identify goals and what criteria defines success ahead of field execution
- Vet the finalists
- Perform economic analysis
- Vertical and horizontal wells follow different workflows

An Integrated Approach to Candidate Selection for Refracturing Success Jason Baihly – Commercial & Risk Assessment Manager Schlumberger

