

1–3 March 2016 FORT WORTH, TEXAS Fort Worth Convention Center

IADC/SPE-178842

Pore Pressure Estimation Using Mechanical Specific Energy (MSE) and Drilling Efficiency

Reza Majidi, Martin Albertin, Nigel Last, BP plc.

Pore Pressure

- Lower bound of Drilling Window
- Collapse Pressure (wellbore stability)
- Fracture Gradient

Pore Pressure Estimation

- Direct Measurements (permeable formations)
 - ➢ FPWD, MDT, DST,...
 - Kicks, influx and gas data...
- Indirect estimates (for shales)
 - Logs (Sonic, Resistivity, GR,...)
 - Drilling Mechanics data (ROP, RPM, WOB, Torque..) 20,000

<u>OUTLINE</u>

- Pore pressure and drilling mechanics data
- d-exponent method
- Mechanical Specific Energy (MSE)
- MSE and pore pressure
- Drilling Efficiency and Pore pressure Workflow
- Field Example
- MSE-based Pore Pre. vs dx-base Pore Pressure
- Downhole vs. Surface data
- Torque @ bit measurement & MSE

Pore Pressure & Drilling Performance

EFFECT OF DIFFERENTIAL PRESSURE ON DRILLINC RATE,

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

20

MODIFIED d - EXPONENT (d - UNITS)

0.6 0.8 1.0

0.4

0,1

0.2

d-Exponent Method

Bingham drilling model, 1965
$$ROP = K \times RPM \left(\frac{WOB}{d_{bit}}\right)^{dX}$$

Jorden and Shirley in 1966 $dX = \frac{\log \left(\frac{ROP}{60 RPM}\right)}{\log \left(\frac{12 WOB}{d_{bit}}\right)}$
Rehm and McClendon,1971 (corrected for Mud Weight used)
 $dXc = \frac{\rho_n}{\rho_w} dX$
 $p = \frac{dXc}{dXc}, n} p_n$

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

Mechanical Specific Energy (MSE)

Teale (1965)

Energy required to destroy a unit volume of rock.

 $MSE = \frac{480 \times T \times RPM}{d_{bit}^{2} \times ROP} + \frac{4 \times WOB}{\pi d_{bit}^{2}}$

Т	Torque, ft.lb	
WOB	weight on bit, lbf	
ROP	rate of penetration, ft/hr	
RPM	revolutions per minute, mir) ⁻¹
d_{bit}	Bit diameter, in	
MSE	mechanical specific energy,	psi

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

Pore Pressure & MSE: Experimental Work

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

Borehole Environment

Confined Compressive Strength (CCS)

 $CCS = UCS + \Delta p \left(\frac{1 + \sin \theta}{1 - \sin \theta}\right)$

UCS	Unconfined Compressive Strength, psi
θ	angle of Internal friction, Rock property
Δp	Confining Pressure, psi
CCS	Confined Compressive Strength, psi

Drilling Efficiency: $DE = \frac{Rock \ Strength \ (insitu)}{Energy \ required \ to \ break} = \frac{CCS}{MSE}$

 $\Delta p = ECD - PP$

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

Drilling Efficiency (DE) and Pore Pressure

IADC/SPE-178842 • Method for Pore Pressure Estimation Using Mechanical Specific Energy and Drilling Efficiency • Reza Majidi

Pore Pressure from MSE Work-Flow

Field Example: Deepwater Gulf of Mexico

Downhole vs. Surface Data

Torque vs. WOB

d-exponent vs. MSE based Pore Pressure

Slide 15

Final Remarks

- The proposed energy based approach (<u>MSE-based</u>) provides new insight into pore pressure estimation from drilling mechanics data (real-time pp detection @ bit).
- Insitu rock strength was considered in order to obtain pore pressure from MSE and drilling mechanics data (=>drilling efficiency).
- **Downhole data** are recommended to be used for pore pressure estimations. Surface data could be misleading for pore p. estimation.
- Since <u>Torque @ bit</u> dominates the MSE, PP estimation is much more sensitive to the <u>Torque @ bit</u> rather than <u>WOB</u>.
- The <u>MSE-based</u> Pore Pressure approach has great advantages over the dXc in terms of reduced subjectivity in the <u>trend line</u> and capturing the physics of cutting action by taking into account <u>torque</u> and in-situ <u>rock strength</u>.

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

IADC/SPE DRILLING CONFERENCE AND EXHIBITION

1–3 March 2016 FORT WORTH, TEXAS Fort Worth Convention Center

Thank You Questions?

Slide 17