Fracturing and Refracturing Insights from Microseismic Geomechanics

Mark Mack, Geomechanics Director

ITASCA Microseismic and Geomechanical Evaluation

Microseismic Geomechanics: Increased understanding; reduced risk

Outline

- Quick overview of applications of microseismic in hydraulic fracturing
- Introduction to Microseismic Geomechanics
- Horn River Basin case study to illustrate the workflow
 - Basic inputs
 - Calibration
 - Sensitivity
 - Completion Optimization
 - Reservoir Modeling
- Upper Montney case study to address a specific question
 - Does microseismic asymmetry indicate fracture asymmetry or microseismic "blindspots"?
- Eagle Ford refracturing example
 - -Diagnosing Success of Diversion
- Wrap-up

Microseismic Hydraulic Fracture Applications

- ✓ Fracture direction✓ Height
- ✓ Length
- ✓ Complexity

Optimize Stimulation Design

- height growth
- injection rate and volume
- fluid type, additives, and diverters
- proppant placement

Validate Completion Design

- completion types and designs
- stage isolation
- stage sequencing
- refracturing

Refine Well Plan

- well orientation
- landing point
- well integrity

Improve Reservoir Management

- well spacing
- well placement
- induced seismicity and fault activation
- reservoir characterization
- production optimization

Qualitative/Geometry

True quantitative interpretation can *only* be achieved with a geomechanical context of both microseismic and aseismic deformation

Quantitative/Deformation

- Workflow
 - Basic inputs
 - Calibration
 - Sensitivity Study
 - Completion Optimization

Representative Stage: St5 Part 1

- Injection Depth: 2460 m (approx. 8000 ft)
- Cluster Spacing: 25 m (80 ft)
- Injection Rate: 60 bpm for 95 min
- Fluid viscosity: 100 cP
- Leakoff Coefficient: 5 x 10⁻⁵ ft/min^{1/2}

- Field MS data consistent with 90° strike (parallel to SHmax) and 80° dip
 => DFN
- Fracture Density: 6.9 x 10⁻⁶ num/m³
- Fracture element size derived from magnitude distribution

Calibrated Model – Microseismic Moment

Aperture in Primary Fractures

Stimulated DFN

Proppant Concentration

Proppant Distribution

Fluid Distributions

- How much do fracture geometry and microseismic response change if inputs change?
- Are fracture geometry AND microseismic similar to original model?
 - Model results insensitive to parameter change. Not important to future results.
- Is the geometry the same but the microseismic response changes?
 - Microseismic depends on reservoir parameters and completion.
 - Microseismic can be used to define reservoir parameters (e.g. DFN)
- Does fracture geometry AND microseismic change?
 - Microseismic can be used as a diagnostic in future wells.
- Does the geometry change but the microseismic response stay the same?
 NON-UNIQUE CALIBRATION. Need other data to calibrate the model better.

Example – Changed Stress Profile

Example – Changed Stress Profile

Sensitivity to DFN geometry

• A calibrated model can be used to drive field test program or other changes.

Alternate Design – Viscosity, Injection Rate, Clusters

Upper Montney Case Study

- The microseismic data cloud is asymmetric.
 - Is the fracture asymmetric?
 - What could cause this asymmetry?
- Build a 3D hydraulic-geomechanical model using available geologic data, and simulate the injection sequence.
 - Relate hydraulic fracture dimensions (length, height) to microseismic dimensions
 - Do the volumetrics make sense?

- Open-hole, sliding-sleeve hydraulic stimulation in the Upper Montney
- Microseismic data recorded during stimulation
 - Asymmetric microseismic data about injection point
 - Is the asymmetry real?

IMαGE

Geologic inputs for the geomechanical model:

- Elasticity parameters
- Stress field
 - Shmin from DFIT analysis
 - Corrections due to tectonic effects
- DFN density and fracture characteristics
- Pore pressure
- Injection Schedule
 - Slickwater @ 11 m³/min for 33 min
 - 30/50 proppant ramp

Discrete Fracture Network

Primary fracture set with strike 40⁰, dip 35⁰ Secondary fracture set with strike 87⁰, dip 35⁰

Calibrated Synthetic vs Field Microseismicity

• Good match for both stages 32 and 34 for MS lengths and heights

=> fracture lengths and asymmetry in MS data could be real

- Field MS
- Modeled MS

- Field MS
- Modeled MS

Synthetic microseismic mechanisms

Fracture and Proppant Extents

Stage 34 calibration requires a horizontal stress gradient

5 Perforation clusters

 σ_{min} .

- Model indicates a stress shadow effect between clusters
- Local effects could be responsible

σ_{min} Gradient

Synthetic MS

Refracturing in the Eagle Ford

• Typical Eagle Ford well refractured after 3 years on production

Geometry of initial fractures and DFN

Stress state and pore pressure after depletion

- 1. Poor diversion with <u>all initial and refracture perforations open</u>
- 2. Partial diversion, with half the initial perforations closed
- 3. Perfect diversion with all initial perforations closed
- 4. Perfect diversion, with a limited number of perforations in the new stage

Geometry of Primary Fractures: Poor Diversion

Fluid Distribution: Poor versus Partial Diversion

Final Geometry for Four Cases

Microseismic Time-Distance Plots

Microseismic Time-Distance Plots - Filtered

Wrap-up

- Microseismic Geomechanics to understand microseismic data
 - -Calibrated fracture model
 - -Insights into the complete fracture network including tensile and aseismic parts
- Horn River Basin case study
 - Field data => Calibrated model => Completion optimization
- Upper Montney case study
 - Stress shadowing can cause microseismic asymmetry
- Eagle Ford refracturing example
 - -Field diagnostic of diversion success
 - -Good example of using model to gain insight and lead to a simple field diagnostic

