

JOIN THE CONVERSATION

@SPE_EVENTS

#SPEWEBEVENTS

About Bill

- 39 years experience
- BS Petroleum Engineering USL
- MS Systems Management USC
- ¼ career Operations
- ¼ career Technology Centers
- ¼ career Project support
- 2014 Formed Bill Capdevielle Enterprises, LLC
 - Innovation & Nanotechnology
- 2014 Formed Oil Patch Engineering, PLLC
 - Engineering consulting
 - Facility Operability & Operations Support
 - Project Management & Support
 - Field Development Studies

Willard C. (Bill) Capdevielle, P.E.

President & Founder

Bill Capdevielle Enterprises, LLC

Bill.Capdevielle@oilpatchengr.com

www.BillCapdevielle.Enterprises

Facility Operability: Designing Operable Facilities

SPE Gulf Coast Chapter PF&C Study Group Meeting
18 November, 2014

www.BillCapdevielle.Enterprises

www.OilPatchEngr.com

Facility Operability – Presentation Overview

- Definitions
- Setting the Foundation
- Facility Operability Elements
- Key Success Factors
- Questions & Discussion
- Mechanical Completion
- Commissioning

• Operability: those characteristics of facilities which enable them to be operated <u>safely</u> & <u>efficiently</u>

- Operability: those characteristics of facilities which enables them to be operated <u>safely</u> & <u>efficiently</u>
- **Production Operations:** the organization charged with the sustainable business performance of the asset
 - Management
 - Administrative
 - Finance & Accounting
 - Engineering
 - Logistics & Warehousing
 - Procurement
 - FHS
 - Facility Operations

- Operability: those characteristics of facilities which enables them to be operated <u>safely</u> & <u>efficiently</u>
- Production Operations: the organization charged with the sustainable business performance of the asset
- Facility Operations: the onsite organization that has care, custody & control of the facility
 - Startup & shutdown systems & equipment
 - Monitor and correct facility operating parameters
 - Issue & rescind work permits
 - Perform energy isolations
 - Enforce SIMOPS
 - Control all activities on the facility
 - Maintain drawings and set point register

- Operability: those characteristics of facilities which enables them to be operated <u>safely</u> & <u>efficiently</u>
- Production Operations: the organization charged with the sustainable business performance of the asset
- Facility Operations: the onsite organization that has care, custody & control of the facility
- Facility Maintenance
- Facility Logistics
- Facility EHS

Facility Operability

Foundation Concepts

1. It is far simpler to impact a project early in the project timeline.

The longer you wait to get it right, the more it is going to cost!!

- 1. It is far simpler to impact a project early in the project timeline.
- 2. Done correctly, Facility Operability does not increase project cost, or delay schedule.
 - Facilities with poor operability can experience significant downtime and production loss.
 - Facility Operability eventually be attained.
 - See Rule 1 above.

- 1. It is far simpler to impact a project early in the project timeline.
- 2. Done correctly, Facility Operability does not increase project cost, or delay schedule.
- 3. Facility Operability is the responsibility of the operating organization.
 - They will "own" the facilities.
 - They will have unique expertise.
 - They can help optimize capital costs vs. operating expense.
 - They will (hopefully) come with time and money.

- 1. It is far simpler to impact a project early in the project timeline.
- 2. Done correctly, Facility Operability does not increase project cost, or delay schedule.
- 3. Facility Operability is the responsibility of the operating organization.
- 4. You are <u>not</u> building a facility; you are building a business.
 - Safe
 - Profitable
 - Sustainable

- 1. It is far simpler to impact a project early in the project timeline.
- 2. Done correctly, Facility Operability does not increase project cost, or delay schedule.
- 3. Facility Operability is the responsibility of the operating organization.
- 4. You are not building a facility; you are building a business.

Facility Operability

✓ FOUNDATION COMPLETE

BUILDING A BUSINESS

OPERATIONS GROUP RESPONSIBLE FOR OPERABILITY
OPERABILITY DOES NOT INCREAST COST OR SCHEDULE

EARLY PROJECT IMPACTS

Facility Operability

Facility Operability – Elements

1. Value Proposition

This project will economically develop and produce approximately 4 TCF of gas from the Miocene A reservoir in Block 312 in approximately 1200 feet of water, process the gas to pipeline quality, measure and re-inject condensate into the gas export line, and export product to one of several gas pipelines in the vicinity.

Morphs into Design Basis

2. Philosophies

Design

- Design Basis Memorandum
- Design Standards
- Cost Basis
- Project Schedule
- Construction Plan
- Contracting Plan
- ESD Philosophy
- Fire & Gas Detection Philosophy
- Process Control Philosophy
- Relief/Flare Philosophy

Operability

- Operating Philosophy
- Isolation Philosophy
- Maintenance Philosophy
- Integrity Philosophy
- Corrosion Philosophy
- Logistics Plan
- Waste Management Philosophy
- Emergency Preparedness Plans

3. Developing Operating Organization(s)

- Organizational Functions
- Organization Chart
- Responsibilities & Authorities
- Job Descriptions
- Staffing Plan
- Employee vs. Contractor
- ExPat vs. Indigenous
- Rota & Shift
- Personnel Development Plan
- Cost Profile

4. Work Management System(s)

- Safety (EHS) Management System
- Work Control Philosophy
- Permit To Work System
- Energy Isolation System
- Critical Device Override System
- SIMOPS
- Management of Change System
- Assurance System
- Improvement System

5. Maintenance Management System(s)

- Computerized Maintenance Management System (CMMS)
- Taxonomy
- Equipment List
- Equipment Criticality Assessments
- Equipment Maintenance Strategies
- Maintenance Procedures
- Facility Integrity Strategies
- Equipment Performance/Failure Tracking
- Inspection Recording System
- Maintenance Reporting System

6. Operating Procedures

- Overall Facility Startup/Shutdown Strategies
- System Operating Procedures
- Equipment Operating Procedures

Operating Procedure Requirements

Black Start	Operating Limits
Cold Start	Step-by-step actions
Hot Start	Who performs actions
Normal Shutdown	Reference tag & line numbers
Emergency Shutdown	Human Factors Considerations
Normal Operations	! Warnings

7. Training & Competency Assurance

- Competency Requirements
- Types of Competencies
 - Industry Safety
 - Industry Technical
 - Site Safety
 - Site Technical
- Types of Training (formal, OJT)
- Competency Assurance
- Ongoing Training

8. Documentation for Operations

- Facility As-Builts
- Equipment catalogs, drawings, parts lists, repair procedures
- Equipment specifications (POs)
- Final Design Basis
- Engineering studies
- Safety studies
- Operability studies
- QA/QC records

Facility Operability – DFO

Why is Facility Documentation Important?

- Accelerate breakdown diagnostics
- Accelerate repairs
- Validates Operating & Repair Procedures
- Enhances safety

Facility Operability – DFOs

Repairs on Potable Water Tank

- Safety Alem
- Threaded fitting ejected while being removed
- Caused severe facial injuries

Contact: Glynn T. Breaux (504) 736-2560

- BOEMRE Investigation showed: Tank Bladder Rupture
 - No manufacture when an ual (s) a On tracking below the pressure due to the pressurized potable water turned off, the system isolated and the water lines depressured. When the employee unthreaded a fitting
 Manufacturer manual stated of the system isolated and the water lines depressured. When the employee unthreaded a fitting
 - Manufacturer manual stated: "This tank is pressurized and under no circumstances should the tank, fittings or connected system be disassembled prior to complete discharging of all air and fluid
 - pressure."
- A Job Safety Analysis (JSA) was completed, but the JSA only included the task for changing the
 filters on the fresh water system. The JSA should have included de-pressurizing the bladder prior
 to removal of the fitting.
- There were no WPT manufacturer manual(s) located on the facility to access information needed to service the WPT in a safe manner.
- The WPT manufacturer instructions state, "This tank is pre-pressurized and under no circumstances should the tank, fittings or connected system be disassembled prior to complete discharging of air and fluid pressure."

9. Operations Assurance

- Operability Audits throughout EPC
 - On schedule
 - On cost
 - Quality of work
 - Any issues
- Operational Readiness Review
 - Operations organization built
 - Sales Contracts in place
 - Vendor contracts in place
 - Emergency Preparedness
 - Daily reporting/production allocation in place
 - Reservoir management plan in place
 - Well surveillance plan in place
- PSSR

- 1. Value Proposition
- 2. Philosophies
- 3. Operating Organization(s)
- 4. Work Management System(s)
- 5. Maintenance Management System(s)
- 6. Operating Procedures
- 7. Training & Competency Assurance
- 8. Documentation for Operations
- 9. Operations Assurance

Facility Operability

- √ FOUNDATION COMPLETE
- ✓ OPERABILITY ELEMENTS DEFINED

Facility Operability

Key Success Factors

1. Operations Involvement

- Early
- Appropriate
 - Number of operations people
 - Responsibility & authority
 - Knowledge of existing operations
 - Team players, but tenacious
 - People who will operate

Appropriate Operations Involvement Example #1

- Major operator, Offshore West Africa
- High pressure gas system

Platform

8" 5000 psi dry gas line

Unmanned Wellhead
Platform

Appropriate Operations Involvement Example #1

Facility Operability – Risk Control Hierarchy

Most Effective	CONTROLS	EXAMPLES
900 000 0000 000	1. Elimination	 Design to eliminate hazards, such as falls, hazardous materials, noise, confined spaces, and manual material handling.
Operations Solution	Substitution	 Substitute for less hazardous material
		 Reduce energy (for example: lower speed, force, amperage, pressure, temperatures, and noise).
	Engineering Controls	Ventilation systems
	Anna San San San San San San San San San	 Machine guarding
		 Sound enclosures
		Circuit breakers
		 Access platforms and guard railing
		 Interlocks
		Lifting devices
	Warnings	 Signs
		 Alarms
		 Beepers
		Horns
		Labels
	Administrative Controls	Procedures:
		Safe job procedures
		Rotation of workers
		Safety equipment and inspections
Engineering Colution		Changing work schedules
Engineering Solution Least Effective		Training:
		Hazard communication training Confined space onto
	Personal Protective	Confined space entry Safety glasses
	Equipment	 Safety glasses Hearing protection
	Egophion	Face shields
	00	Safety harnesses and lanyards
	7 l	Salety namesses and lanyards Gloves
		Respirators

REFERENCE: ANSI Z10-2005, American National Standard - Occupational Health and Safety Management Systems, Section 5.1.1, "Hierarchy of Control"

Appropriate Operations Involvement Example #2

Appropriate Operations Involvement Example #2

- System isolation valve <u>MUST BE</u> Locked Closed(LC)
- Question for Client Operations Superintendent:
 - Is the Management of Change system, <u>as practiced in the field</u>, sufficiently robust such that, when commissioning the Gas Lift system, the Facility Operations personnel will know to LO the PSV isolation valves?

2. 3D Modeling

- Virtual walk-throughs
- Operations activities
- Material handling
- Emergency egress
- Human factors
 - Lighting
 - Indicators
 - Controls

3D Modeling

3. RAM Studies

- Reliability, Availability, Maintainability
- Numerical model of facilities & operations
- Monte Carlo simulation
- Yields % availability (at a given confidence level)
- Shows greatest contributors to lost availability
- Can optimize facility design & operations philosophy

RAM Study Example

- Large LNG Development
- Assessed availability of system
- Split offshore & LNG plant
- LNG Plant: Largest cause of downtime turbine maintenance
- Offshore: Evaluated reducing 20 wells to 15
- Offshore: Evaluated impact of no SDP

RAM Study Example - Offshore

4. Operations Squad Checks of Engineering

- Engineering Studies
- Safety Studies
- Engineering Drawings
- RFQs & POs
- Internal (Rev A, B, C.....)
- Client (Rev 0, 1, 2)

5. Engineering Squad Checks of Operability

- Operations safety studies
- Operability specifications
- Operations philosophy
- Isolation philosophy
- Operating & Maintenance procedures
- Operability Management Plan

Engineering Checks of Operating Procedures

Ensure that the procedures conform to the design

TITLE 6. REGULATION OF ENGINEERING, ARCHITECTURE, LAND SURVEYING, AND RELATED PRACTICES SUBTITLE A. REGULATION OF ENGINEERING AND RELATED PRACTICES

CHAPTER 1001. ENGINEER

SUBCHAPTER A. GENERAL PROVISIONS

§ 1001.003. Practice of Engineering

- (c) The practice of engineering includes:
 - (8) engineering for preparation of an operating or maintenance manual;

Engineering Checks of Operating Procedures

(8) engineering for preparation of an operating or maintenance manual;

For facilities that Texas law requires the design be stamped by a Texas registered PE:

- Operating Manual (operating procedures) MUST be reviewed and stamped by a Texas registered PE.
- The elements of the Maintenance Manual that affects the protection of people, property or the environment MUST be reviewed and stamped by a Texas registered PE.
 - Equipment strategies
 - Repair procedures
 - Preventative maintenance programs
 - Facility integrity programs
 - Fitness for service evaluations
 - Pressure containment, electrical integrity, structural

6. Operability Activities in Project Schedule

- Allows planning & tracking of operability activities
- Enables coordination of design & operability activities
- Enables joint resource planning

Operability Activities in Project Schedule

Design / Build Facilities

7. Operability Management Plan

- Formalizes:
 - Operability plans
 - Roles & Responsibilities
 - Operability organization
 - Operability Assurance program
 - Interfaces among:
 - Project Team
 - Operations Team
 - Contractors, Fabricators, Vendors
 - Construction/Installation
 - Startup & Commissioning

8. Procurement! Procurement! Procurement!

- Procurement may begin early in a project
- NEED to have Operability input into RFQs & POs
 - Documentation requirements
 - Recommended spare parts
 - Full spare parts list
 - Parts commonality
 - Transition to Operations
- VERY COSTLY to add Operability in later

- 1. Operations Involvement
- 2. 3D Modeling
- RAM Studies
- 4. Operations Squad Checks of Engineering
- 5. Engineering Squad Checks of Operability
- 6. Operability Activities in Project Schedule
- 7. Operability Management Plan
- 8. Procurement! Procurement! Procurement!

Facility Operability

✓ STAGE SETTING COMPLETE

✓ OPERABILITY ELEMENTS
DEFINED

✓ KEY SUCCESS FACTORS

Facility Operability - Completed Model

Questions - Discussion

Willard C. (Bill) Capdevielle, P.E.

President & Founder

Bill Capdevielle Enterprises, LLC

www.BillCapdevielle.Enterprises

